Skip to main content

Lowest common ancestor of binary search tree

Question : Write a function to print the lowest common ancestor of two nodes in a binary search tree. 

Lowest common ancestor of two nodes x and y in a binary tree is the lowest node that has both x and y as descendants.


Here lowest common ancestor of 1 and 7 is 3. LCA of 13 and 7 is root - 8. And LCA of 6 and 7 is 6 itself.

The program to find gets complicated for an ordinary binary tree. But for a binary search tree, it is quite simple.


As we see from the diagram above, the paths to 1 and 4 are common till the node 3. And at 3 they branch in different directions. So 3 is our LCA.

That is lowest common ancestor is the node where the paths to x and y from root deviate. As long as they branch in same direction, we continue to traverse. When they branch in different directions, that is the lowest common ancestor.

So let us write a simple algorithm,
  1. set temp=root
  2. if temp->val >x and temp->val>y
    1. temp = temp->left
  3. else if temp->val<x and temp->val <y
    1. temp = temp->right
  4. if neither then  break the loop and we have found our LCA
  5. repeat steps 2 to 6 until temp is null
Here is the function for finding lowest common ancestor in C.



NODEPTR lowest_common_ancestor(NODEPTR root, int num1,int num2)
{
   NODEPTR temp = root;
   while(temp!=NULL)
   {
        if(num1>temp->val && num2>temp->val ) 
              temp = temp->right; 
        else if(num1<temp->val && num2<temp->val)
              temp= temp->left;
        else
              break; 
    }
    return temp;  
}
Here is the driver program
#include<stdio.h>
#include<stdlib.h>
struct node
{
   int val;
   struct node *left;
   struct node *right;
};
typedef struct node *NODEPTR;

NODEPTR create_node(int num)
{
     NODEPTR temp = (NODEPTR)malloc(sizeof(struct node));
     temp->val = num;
     temp->left = NULL;
     temp->right = NULL;
     return temp;
} 

NODEPTR insert_node(NODEPTR nd,NODEPTR newnode)
{
    if(nd==NULL)
       return newnode;/* newnode becomes root of tree*/
    if(newnode->val > nd->val)
        nd->right = insert_node(nd->right,newnode);
    else if(newnode->val <  nd->val)
        nd->left = insert_node(nd->left,newnode); 
    return nd;   
}

void in_order(NODEPTR nd)
{
   if(nd!=NULL)
    {
        in_order(nd->left);
        printf("%d---",nd->val);
        in_order(nd->right);
     }
}
NODEPTR lowest_common_ancestor(NODEPTR root, int num1,int num2)
{
   NODEPTR temp = root;
   while(temp!=NULL)
   {
        if(num1>temp->val && num2>temp->val ) 
              temp = temp->right; 
        else if(num1<temp->val && num2<temp->val)
              temp= temp->left;
        else
              break; 
    }
    return temp;  
} 


int main()
{
       NODEPTR root=NULL,delnode; 
       int n;
       do
       {
           NODEPTR newnode;
           printf("Enter value of node(-1 to exit):");
           scanf("%d",&n);
           if(n!=-1)
            {  
               newnode = create_node(n);
               root = insert_node(root,newnode);
             }
       } while (n!=-1);
       
       printf("\nInorder traversal\n");
       in_order(root);
      
       while(1)
       {
          NODEPTR snode;
          int num1,num2;
          printf("Enter two values num1 and num2:");
          scanf("%d %d",&num1,&num2);
          snode = lowest_common_ancestor(root,num1,num2);
          if(snode==NULL)
             printf("Value not found");
          else 
             printf("ancestor is %d\n",snode->val);
       }
       return 0;
}

Comments

Popular posts from this blog

Linked list in C++

A linked list is a versatile data structure. In this structure, values are linked to one another with the help of addresses. I have written in an earlier post about how to create a linked list in C.  C++ has a library - standard template library which has list, stack, queue etc. data structures. But if you were to implement these data structures yourself in C++, how will you implement? If you just use new, delete, cout and cin, and then claim it is your c++ program, you are not conforming to OOPS concept. Remember you have to "keep it together". Keep all the functions and variables together - in a class. You have to have class called linked list in which there are methods - append, delete, display, insert, find, find_last. And there will also be a data - head. Defining node We need a structure for all these nodes. A struct can be used for this purpose, just like C. struct node { int val; struct node * next; }; Next we need to define our class. W

Swap nodes of a linked list

Qn: Write a function to swap the adjacent nodes of a singly linked list.i.e. If the list has nodes as 1,2,3,4,5,6,7,8, after swapping, the list should be 2,1,4,3,6,5,8,7 Image from: https://tekmarathon.com Though the question looks simple enough, it is tricky because you don't just swap the pointers. You need to take care of links as well. So let us try to understand how to go about it. Take two adjacent nodes p1 and p2 Let prevnode be previous node of p1 Now link prevnode to p2 Link p2 to p1 Link p1 to next node of p2 So the code will be prevnode -> next = p2; p1 -> next = p2 -> next; p2 -> next = p1; But what about the start node or head? head node does not have previous node If we swap head with second node, modified head should be sent back to caller  To take care of swapping first and second nodes, we can write p1 = head; p2 = head -> next; p1 -> next = p2 -> next; p2 -> next = p1; head = p2;  Now we are read

Binary tree deletion - non-recursive

In the previous post we have seen how to delete a node of a binary search tree using recursion. Today we will see how to delete a node of BST using a non-recursive function. Let us revisit the 3 scenarios here Deleting a node with no children just link the parent to NULL Deleting a node with one child link the parent to  non-null child of node to be deleted Deleting a node with both children select the successor of node to be deleted copy successor's value into this node delete the successor In order to start, we need a function to search for a node in binary search tree. Did you know that searching in  a BST is very fast, and is of the order O(logn). To search Start with root Repeat until value is found or node is NULL If the search value is greater than node branch to right If the search value is lesser than node branch to left.  Here is the function NODEPTR find_node (NODEPTR root,NODEPTR * parent, int delval) { NODEPTR nd = root; NODEPTR pa = root; if (root -> v