Skip to main content

Binary tree deletion - non-recursive

In the previous post we have seen how to delete a node of a binary search tree using recursion.

Today we will see how to delete a node of BST using a non-recursive function.

Let us revisit the 3 scenarios here
  1. Deleting a node with no children
    • just link the parent to NULL
  2. Deleting a node with one child
    • link the parent to  non-null child of node to be deleted
  3. Deleting a node with both children
    • select the successor of node to be deleted
    • copy successor's value into this node
    • delete the successor
In order to start, we need a function to search for a node in binary search tree. Did you know that searching in  a BST is very fast, and is of the order O(logn).

To search
  • Start with root
  • Repeat until value is found or node is NULL
    • If the search value is greater than node branch to right
    • If the search value is lesser than node branch to left. 
Here is the function


NODEPTR find_node(NODEPTR root,NODEPTR *parent,int delval)
{
NODEPTR nd = root;
NODEPTR pa = root;
if(root->val==delval)
{
*parent = NULL;
return root;
}
while(1 )
{

if(nd==NULL)
return NULL;

if(delval < nd->val)
{
pa = nd;
nd = nd->left;
}
else if(delval>nd->val)
{
pa = nd;
nd = nd->right;
}
else
{/* we found a match */

*parent = pa;
return nd;
}

}
}

What is this function? Looks complicated? Not really. We have just added some codes to find the parent also. Remember we need parent of the node to be deleted too. Before we branch to left or to right, we set current node as parent.

Next we have to write deletion function


NODEPTR delete_non_recursive( NODEPTR root,NODEPTR delnode,NODEPTR parent)
{
NODEPTR pa;

if (delnode->left!=NULL && delnode->right!=NULL)/*has both subtrees*/
{

NODEPTR succ = find_rightst_min(delnode,&parent);
delnode->val = succ->val;
delnode=succ;
}
if (delnode->left!=NULL)
{
/*has only left child*/
if(parent==NULL){
/*we are deleting root*/
root = delnode->left;
}else
{
if(parent->left ==delnode)
parent->left = delnode->left;
else
parent->right = delnode->left;
}
free(delnode);
}
else if(delnode->right!=NULL)
{/*has only right subtree*/
if(parent==NULL)/*we are deleting root*/
{
root = delnode->right;
}
else{
/*has only right child*/
if(parent->left==delnode)
parent->left = delnode->right;
else
parent->right = delnode->right;
}
free(delnode);
}
else{

/* leaf node */
if(parent==NULL)
{
root = NULL;
}
else{
if(parent->left==delnode)
{
parent->left = NULL;
free(delnode);
}
else
{
parent->right = NULL;
free(delnode);
}
}
}
return root;
}

The special case here is what about deletion of root? If we delete the root, there is no parent. Parent has been set to NULL in find_node function for this case. So in each of the 3 scenarios, we check if parent is null. If parent is null then root is reconfigured to either a non-null child of node to be deleted or to null if root is the only node in the tree.

Now it is time for complete program.


#include<stdio.h>
#include<stdlib.h>
struct node
{
int val;
struct node *left;
struct node *right;
};
typedef struct node *NODEPTR;

NODEPTR create_node(int num)
{
NODEPTR temp = (NODEPTR)malloc(sizeof(struct node));
temp->val = num;
temp->left = NULL;
temp->right = NULL;
return temp;
}

NODEPTR insert_node(NODEPTR nd,NODEPTR newnode)
{
if(nd==NULL)
return newnode;/* newnode becomes root of tree*/
if(newnode->val > nd->val)
nd->right = insert_node(nd->right,newnode);
else if(newnode->val < nd->val)
nd->left = insert_node(nd->left,newnode);
return nd;
}

void in_order(NODEPTR nd)
{
if(nd!=NULL)
{
in_order(nd->left);
printf("%d---",nd->val);
in_order(nd->right);
}
}

void pre_order(NODEPTR nd)
{
if(nd!=NULL)
{
printf("%d---",nd->val);
pre_order(nd->left);
pre_order(nd->right);

}
}

void post_order(NODEPTR nd)
{
if(nd!=NULL)
{
post_order(nd->left);
post_order(nd->right);
printf("%d---",nd->val);
}
}


/*go left till you reach null*/
NODEPTR find_rightst_min(NODEPTR nd,NODEPTR *parent)
{
NODEPTR pa = nd;
nd = nd->right;
while(nd->left)
{
pa = nd;
nd = nd->left;
}
*parent = pa;
return nd;
}


NODEPTR find_node(NODEPTR root,NODEPTR *parent,int delval)
{
NODEPTR nd = root;
NODEPTR pa = root;
if(root->val==delval)
{
*parent = NULL;
return root;
}
while(1 )
{

if(nd==NULL)
return NULL;

if(delval < nd->val)
{
pa = nd;
nd = nd->left;
}
else if(delval>nd->val)
{
pa = nd;
nd = nd->right;
}
else
{/* we found a match */

*parent = pa;
return nd;
}

}
}

NODEPTR delete_non_recursive( NODEPTR root,NODEPTR delnode,NODEPTR parent)
{
NODEPTR pa;

if (delnode->left!=NULL && delnode->right!=NULL)
{

NODEPTR succ = find_rightst_min(delnode,&parent);
delnode->val = succ->val;
delnode=succ;
}
if (delnode->left!=NULL)
{
/*has only left child*/
if(parent==NULL){
root = delnode->left;
}else/*we are not deleting root*/
{
if(parent->left ==delnode)
parent->left = delnode->left;
else
parent->right = delnode->left;
}
free(delnode);
}
else if(delnode->right!=NULL)
{
if(parent==NULL)/*we are deleting root*/
{
root = delnode->right;
}
else{
/*has only right child*/
if(parent->left==delnode)
parent->left = delnode->right;
else
parent->right = delnode->right;
}
free(delnode);
}
else{

/* leaf node */
if(parent==NULL)
{
root = NULL;
}
else{
if(parent->left==delnode)
{
parent->left = NULL;
free(delnode);
}
else
{
parent->right = NULL;
free(delnode);
}
}
}
return root;
}


int main()
{
NODEPTR root=NULL,delnode;
int n;
do
{
NODEPTR newnode;
printf("Enter value of node(-1 to exit):");
scanf("%d",&n);
if(n!=-1)
{
newnode = create_node(n);
root = insert_node(root,newnode);
}
} while (n!=-1);

printf("\nInorder traversal\n");
in_order(root);


while(1){
NODEPTR search_node,parent;
printf("Enter node to be searched(-1 to stop)");
scanf("%d",&n);
if(n==-1)
break;
search_node = find_node(root,&parent,n);
if(search_node!=NULL){
root = delete_non_recursive(root,search_node,parent);
if(root==NULL)
{
printf("Now tree is empty");
break;
}
else{
printf("now tree is");
in_order(root);printf("\n");
}
}else{
printf("Node not found");
}
}
return 0;
}

Happy binary trees :)

Comments

Popular posts from this blog

Delete a node from doubly linked list

Deletion operation in DLL is simpler when compared to SLL. Because we don't have to go in search of previous node of to-be-deleted node.  Here is how you delete a node Link previous node of node of to-be-deleted to next node. Link next node of node of to-be-deleted to previous node. Free the memory of node of to-be-deleted Simple, isn't it. The code can go like this. prevnode = delnode->prev; nextnode = delnode->next; prevnode->next = nextnode; nextnode->prev = prevnode; free(delnode); And that is it. The node delnode is deleted. But we should always consider boundary conditions. What happens if we are trying to delete the first node or last node? If first node is to be deleted, its previous node is NULL. Hence step 3 should not be used.  And also, once head is deleted, nextnode becomes head . Similarly if last node is to be deleted, nextnode is NULL. Hence step 4 is as strict NO NO. And we should set prevnode to tail. After we put these things together, we have...

Function to sort an array using bubble sort

Quick and dirty way of sorting an array is bubble sort. It is very easy to write and follow. But please keep in mind that it is not at all effecient. #include<iostream> using std::cin; using std::cout; void readArray(int arr[],int sz); void printArray(int arr[],int sz); void sortArray(int arr[],int sz); void swap(int &a,int &b); int main() {    int sz;    cout<<"Size of the array=";    cin>>sz;    int arr[sz];    readArray(arr,sz);     sortArray(arr,sz);   cout<<"Sorted array is ";   printArray(arr,sz); } void readArray(int arr[],int sz) {  for(int i=0;i<sz;i++)    {       cout<<"arr["<<i<<"]=";       cin>>arr[i];   } } void printArray(int arr[],int sz) {  for(int i=0;i<sz;i++)    {       cout<<"arr["<<i<<"]=";    ...

Merge two binary search trees

How do you merge two binary search trees? I googled about the solutions. Most solutions told me to convert both trees into linked lists. Merge the lists. Then create a tree from the elements of the list. But why lists? Why can't we store the elements in an array? Because if the data of the tree is larger - not just integer keys, array manipulation becomes difficult. But again, we need not convert both the trees into lists. We can convert one tree into list - a doubly linked list. Then insert the elements of this list into the other tree. I tried this approach. To convert a tree into a sorted doubly linked list Create a doubly linked list. Let the prev and next links of nodes in this list be called left and right respectively. This way we can directly use the binary tree nodes in the list. Use a static variable previousnode  call the function recursively for left child of current node. link current node to the previousnode set next pointer of previousnode to curre...