Skip to main content

BFS of binary tree

Question : Write a function for BFS traversal of a binary tree.


Bread first traversal (also called level order traversal) is a traversal method where you visit the siblings of a node before you visit its descendants.

The other method of traversal is called depth first traversal(DFS) where you visit the descendants of a node before you visit its siblings. In-order, pre-order and post-order are all DFS traversal methods.

In BFS, first you visit all the nodes at level 0, then you visit all the nodes at level 1, then you visit nodes at level 2 etc.
For the diagram shown above, the BFS output should be
8
3 10
1 6 14 
4 7 13  ( there is no newline between levels)

To write a code for BFS, we need to take the help of another data structure - a queue.

  • To start with we insert this root to the queue.
  • Then as long as queue is not empty, we remove a node from the queue,
  • visit this node (display its value)
  • and enqueue its both child nodes. 
Here is C function for BFS


void bfs_traverse(NODEPTR root)
{
    struct queue q1;
    NODEPTR nd;
    q1.front=0;q1.rear =-1;
    enqueue(&q1,root);
    while(!is_empty(q1))
    {
        nd = dequeue(&q1) ;
        printf("%d  ",nd->value);     
        if (nd->left != NULL)
            enqueue(&q1,nd->left);
        if (nd->right != NULL )
            enqueue(&q1,nd->right);         
    }  
}

Here is complete program to display the nodes of a binary search tree in Bread first traversal. You can download this program from here.


#include<stdio.h>
#include<stdlib.h>
struct btnode
{ 
    int value; 
    struct btnode *left, *right; 
};
typedef struct btnode *NODEPTR ;
#define MAX 40
struct queue
{ 
   NODEPTR nodes[40];
   int rear,front;
}; 

 NODEPTR insert_node(NODEPTR nd,NODEPTR newnode)
{
    if(nd==NULL)
       return newnode;/* newnode becomes root of tree*/
    if(newnode->value > nd->value)
        nd->right = insert_node(nd->right,newnode);
    else if(newnode->value <  nd->value)
        nd->left = insert_node(nd->left,newnode); 
    return nd;   
}
 
NODEPTR create_node(int num)
{
     NODEPTR temp = (NODEPTR)malloc(sizeof(struct btnode));
     temp->value = num;
     temp->left = NULL;
     temp->right = NULL;
     return temp;
} 
void enqueue(struct queue *qptr,NODEPTR newnode)
{
    if(qptr->rear>=MAX)
      {
 printf("Queue overflow");
        return;
      }
    qptr->rear++;
    qptr->nodes[qptr->rear]=newnode;
}
int is_empty(struct queue qptr)
{
    if (qptr.front>qptr.rear)
      return 1;
    return 0;
}
  
NODEPTR dequeue(struct queue *qptr)
{
    if(is_empty(*qptr))
    {
 printf("Queue empty");
        return NULL;
    }    
    NODEPTR temp= qptr->nodes[qptr->front];
    qptr->front++;
    return temp;
}
   
/* displaying elements using BFS traversal */

void bfs_traverse(NODEPTR root)
{
    struct queue q1;
    NODEPTR nd;
    q1.front=0;q1.rear =-1;
    enqueue(&q1,root);
    while(!is_empty(q1))
    {
        nd = dequeue(&q1) ;
        printf("%d  ",nd->value);     
        if (nd->left != NULL)
            enqueue(&q1,nd->left);
        if (nd->right != NULL )
            enqueue(&q1,nd->right);         
    }  
}

int main() 
{ 
    NODEPTR root = NULL,newnode ; 
    int num = 1; 
    printf("Enter the elements of the tree(enter -1 to exit)\n"); 

    while (1) 
    {     
        scanf("%d",  &num); 
        if (num  ==  -1) 
            break; 
        newnode = create_node(num);
        root = insert_node(root,newnode);
    }
    printf("elements in bfs are\n"); 
    bfs_traverse(root);
    
}

Comments

Popular posts from this blog

Linked list in C++

A linked list is a versatile data structure. In this structure, values are linked to one another with the help of addresses. I have written in an earlier post about how to create a linked list in C.  C++ has a library - standard template library which has list, stack, queue etc. data structures. But if you were to implement these data structures yourself in C++, how will you implement? If you just use new, delete, cout and cin, and then claim it is your c++ program, you are not conforming to OOPS concept. Remember you have to "keep it together". Keep all the functions and variables together - in a class. You have to have class called linked list in which there are methods - append, delete, display, insert, find, find_last. And there will also be a data - head. Defining node We need a structure for all these nodes. A struct can be used for this purpose, just like C. struct node { int val; struct node * next; }; Next we need to define our class. W

Swap nodes of a linked list

Qn: Write a function to swap the adjacent nodes of a singly linked list.i.e. If the list has nodes as 1,2,3,4,5,6,7,8, after swapping, the list should be 2,1,4,3,6,5,8,7 Image from: https://tekmarathon.com Though the question looks simple enough, it is tricky because you don't just swap the pointers. You need to take care of links as well. So let us try to understand how to go about it. Take two adjacent nodes p1 and p2 Let prevnode be previous node of p1 Now link prevnode to p2 Link p2 to p1 Link p1 to next node of p2 So the code will be prevnode -> next = p2; p1 -> next = p2 -> next; p2 -> next = p1; But what about the start node or head? head node does not have previous node If we swap head with second node, modified head should be sent back to caller  To take care of swapping first and second nodes, we can write p1 = head; p2 = head -> next; p1 -> next = p2 -> next; p2 -> next = p1; head = p2;  Now we are read

Binary tree deletion - non-recursive

In the previous post we have seen how to delete a node of a binary search tree using recursion. Today we will see how to delete a node of BST using a non-recursive function. Let us revisit the 3 scenarios here Deleting a node with no children just link the parent to NULL Deleting a node with one child link the parent to  non-null child of node to be deleted Deleting a node with both children select the successor of node to be deleted copy successor's value into this node delete the successor In order to start, we need a function to search for a node in binary search tree. Did you know that searching in  a BST is very fast, and is of the order O(logn). To search Start with root Repeat until value is found or node is NULL If the search value is greater than node branch to right If the search value is lesser than node branch to left.  Here is the function NODEPTR find_node (NODEPTR root,NODEPTR * parent, int delval) { NODEPTR nd = root; NODEPTR pa = root; if (root -> v