Skip to main content

In order traversal of nodes in the range x to y

Question : Write a function for in-order traversal of nodes in the range x to y from a binary search tree.

This is quite a simple function. As a first solution we can just traverse our binary search tree in inorder and display only the nodes which are in the range x to y.

But if the current node has a value less than x, do we have to traverse its left subtree? No. Because all the nodes in left subtree will be smaller than x.

Similarly if the current node has a key value more than y, we need not visit its right subtree.

Now we are ready to write our algorithm.
  •     if nd is NOT NULL 
    • if nd->val >=x then
      • visit all the nodes of left subtree of nd recursively
    • display nd->val
    • if nd->val <y then
      • visit all the nodes of right subtree of nd recursively
 That's all. We have our function ready.


void in_order_middle(NODEPTR nd,int x, int y)
{
    if(nd)
    { 
        if(nd->val >=x)
             in_order_middle(nd->left,x,y);
 if(nd->val>=x && nd->val<=y)
     printf("%d  ",nd->val);
 if(nd->val <=y)
           in_order_middle(nd->right,x,y); 
    }
} 

Comments

Popular posts from this blog

Delete a node from doubly linked list

Deletion operation in DLL is simpler when compared to SLL. Because we don't have to go in search of previous node of to-be-deleted node.  Here is how you delete a node Link previous node of node of to-be-deleted to next node. Link next node of node of to-be-deleted to previous node. Free the memory of node of to-be-deleted Simple, isn't it. The code can go like this. prevnode = delnode->prev; nextnode = delnode->next; prevnode->next = nextnode; nextnode->prev = prevnode; free(delnode); And that is it. The node delnode is deleted. But we should always consider boundary conditions. What happens if we are trying to delete the first node or last node? If first node is to be deleted, its previous node is NULL. Hence step 3 should not be used.  And also, once head is deleted, nextnode becomes head . Similarly if last node is to be deleted, nextnode is NULL. Hence step 4 is as strict NO NO. And we should set prevnode to tail. After we put these things together, we have...

Binary tree deletion - non-recursive

In the previous post we have seen how to delete a node of a binary search tree using recursion. Today we will see how to delete a node of BST using a non-recursive function. Let us revisit the 3 scenarios here Deleting a node with no children just link the parent to NULL Deleting a node with one child link the parent to  non-null child of node to be deleted Deleting a node with both children select the successor of node to be deleted copy successor's value into this node delete the successor In order to start, we need a function to search for a node in binary search tree. Did you know that searching in  a BST is very fast, and is of the order O(logn). To search Start with root Repeat until value is found or node is NULL If the search value is greater than node branch to right If the search value is lesser than node branch to left.  Here is the function NODEPTR find_node (NODEPTR root,NODEPTR * parent, int delval) { NODEPTR nd = root; NODEPTR pa = root; if (ro...

Function to sort an array using bubble sort

Quick and dirty way of sorting an array is bubble sort. It is very easy to write and follow. But please keep in mind that it is not at all effecient. #include<iostream> using std::cin; using std::cout; void readArray(int arr[],int sz); void printArray(int arr[],int sz); void sortArray(int arr[],int sz); void swap(int &a,int &b); int main() {    int sz;    cout<<"Size of the array=";    cin>>sz;    int arr[sz];    readArray(arr,sz);     sortArray(arr,sz);   cout<<"Sorted array is ";   printArray(arr,sz); } void readArray(int arr[],int sz) {  for(int i=0;i<sz;i++)    {       cout<<"arr["<<i<<"]=";       cin>>arr[i];   } } void printArray(int arr[],int sz) {  for(int i=0;i<sz;i++)    {       cout<<"arr["<<i<<"]=";    ...