Skip to main content

Test whether a binary tree is a BST

This is one of the interview questions.

Given a binary tree, find out whether it is a binary search tree.

A binary search tree is an ordered binary tree which satisfies  binary search tree property, which states that the key in each node must be greater than or equal to any key stored in the left sub-tree, and less than or equal to any key stored in the right sub-tree.

A binary Search Tree
  This diagram shows a BST, because each node has key value larger than left subtree and smaller than right subtree.
Binary Tree but not a Binary search tree

This is not a binary search tree because key value of left child of root is larger than 2. And key value of node 7 is has a right child whose value is lesser than 7.

How to write a function

If the in order traversal output does not give key values in ascending order, then the tree is not a binary search tree.

But inorder is a recursive function. So we can not directly compare values. We need to use a global variable to store the value of a node. And as node is visited, it is compared with this global variable - say prevValue. If value of node is smaller than prevValue, then tree is not a BST.

This property must be tested on left and right subtrees also. If left subtree or right subtree is not a BST, then we return false (or 0 in C).

Here is the function

int isBST(NODEPTR nd)
{

if(nd!=NULL)
{
if(!isBST(nd->left))
return 0;
if(nd->val<prevValue)
return 0;
prevValue = nd->val;
return isBST(nd->right);
}
else
return 1;
}

And here is complete program. I have created two trees - one BST and another non-bst. The nodes have to linked explicitly because the ordinary insert methods rely on BST property and would create a BST always.


#include<stdio.h>
#include<stdlib.h>
struct node
{
int val;
struct node *left;
struct node *right;
};
typedef struct node *NODEPTR;
static int prevValue;
NODEPTR create_node(int num)
{
NODEPTR temp = (NODEPTR)malloc(sizeof(struct node));
temp->val = num;
temp->left = NULL;
temp->right = NULL;
return temp;
}

NODEPTR insert_node(NODEPTR nd,NODEPTR newnode)
{
if(nd==NULL)
return newnode;/* newnode becomes root of tree*/
if(newnode->val > nd->val)
nd->right = insert_node(nd->right,newnode);
else if(newnode->val < nd->val)
nd->left = insert_node(nd->left,newnode);
return nd;
}
NODEPTR create_tree1()
{
NODEPTR n1,n2,n3,n4,n5,n6,n7,root;
n1 = create_node(10);
n2 = create_node(20);
n3 = create_node(30);
n4 = create_node(40);
n5 = create_node(50);
n6 = create_node(60);
n7 = create_node(70);
root = n3;
n3->left = n1;
n1->right = n2;
n3->right = n6;
n6->left = n4;
n4->right = n5;
n6->right = n7;
return root;
}
NODEPTR create_tree2()
{
NODEPTR n1,n2,n3,n4,n5,n6,n7,root;
n1 = create_node(10);
n2 = create_node(20);
n3 = create_node(30);
n4 = create_node(40);
n5 = create_node(50);
n6 = create_node(60);
n7 = create_node(70);
root = n3;
n3->left = n1;
n1->left = n2;
n3->right = n6;
n6->left = n4;
n4->right = n5;
n6->right = n7;
return root;
}

void in_order(NODEPTR nd)
{
if(nd!=NULL)
{
in_order(nd->left);
printf("%d---",nd->val);
in_order(nd->right);
}
}
int isBST(NODEPTR nd)
{

if(nd!=NULL)
{
if(!isBST(nd->left))
return 0;
if(nd->val<prevValue)
return 0;
prevValue = nd->val;
return isBST(nd->right);
}
else
return 1;
}


int main()
{
NODEPTR root=NULL,delnode;
int n;
root = create_tree1();
printf("\nInorder traversal\n");
in_order(root);
if(isBST(root))
printf("The tree is a binary search tree");
else
printf("The tree is not a binary search tree");
root =create_tree2();
in_order(root);
if(isBST(root))
printf("this tree is a binary search tree");
else
printf("this tree is not a binary search tree");

return 0;
}

Comments

Popular posts from this blog

Delete a node from doubly linked list

Deletion operation in DLL is simpler when compared to SLL. Because we don't have to go in search of previous node of to-be-deleted node.  Here is how you delete a node Link previous node of node of to-be-deleted to next node. Link next node of node of to-be-deleted to previous node. Free the memory of node of to-be-deleted Simple, isn't it. The code can go like this. prevnode = delnode->prev; nextnode = delnode->next; prevnode->next = nextnode; nextnode->prev = prevnode; free(delnode); And that is it. The node delnode is deleted. But we should always consider boundary conditions. What happens if we are trying to delete the first node or last node? If first node is to be deleted, its previous node is NULL. Hence step 3 should not be used.  And also, once head is deleted, nextnode becomes head . Similarly if last node is to be deleted, nextnode is NULL. Hence step 4 is as strict NO NO. And we should set prevnode to tail. After we put these things together, we have...

Program to delete a node from linked list

How do you remove a node from a linked list? If you have to delete a node, first you need to search the node. Then you should find its previous node. Then you should link the previous node to the next node. If node containing 8 has to be deleted, then n1 should be pointing to n2. Looks quite simple. Isn't it? But there are at least two special cases you have to consider. Of course, when the node is not found. If the node is first node of the list viz head. If the node to be deleted is head node, then if you delete, the list would be lost. You should avoid that and make the second node as the head node. So it becomes mandatory that you return the changed head node from the function.   Now let us have a look at the code. #include<stdio.h> #include<stdlib.h> struct node { int data; struct node * next; }; typedef struct node * NODEPTR; NODEPTR create_node ( int value) { NODEPTR temp = (NODEPTR) malloc( size...

Program to create a Linked List in C

An array is a commonly used data structure in most of the languages. Because it is simple, it needs O(1) time for accessing elements. It is also compact. But an array has a serious drawback - it can not grow or shrink. You need to estimate the array size and define it during compile time. This drawback is not present a linked list. A linked list is a data structure which can grow or shrink dynamically.  A linked list has nodes each of which contain  contain  data and a link to next node . These nodes are dynamically allocated structures. If you need more nodes, you just need to allocate memory for these and link these nodes to the existing list. The nodes of a linked list have to be defined as self-referential structures in C. That is structures with data members and one member which is a pointer to the structure of same type.  This pointer will work as a link to next node. struct node { int data; struct node * next; //pointer to another node }...