Skip to main content

Test whether a binary tree is a BST

This is one of the interview questions.

Given a binary tree, find out whether it is a binary search tree.

A binary search tree is an ordered binary tree which satisfies  binary search tree property, which states that the key in each node must be greater than or equal to any key stored in the left sub-tree, and less than or equal to any key stored in the right sub-tree.

A binary Search Tree
  This diagram shows a BST, because each node has key value larger than left subtree and smaller than right subtree.
Binary Tree but not a Binary search tree

This is not a binary search tree because key value of left child of root is larger than 2. And key value of node 7 is has a right child whose value is lesser than 7.

How to write a function

If the in order traversal output does not give key values in ascending order, then the tree is not a binary search tree.

But inorder is a recursive function. So we can not directly compare values. We need to use a global variable to store the value of a node. And as node is visited, it is compared with this global variable - say prevValue. If value of node is smaller than prevValue, then tree is not a BST.

This property must be tested on left and right subtrees also. If left subtree or right subtree is not a BST, then we return false (or 0 in C).

Here is the function

int isBST(NODEPTR nd)
{

if(nd!=NULL)
{
if(!isBST(nd->left))
return 0;
if(nd->val<prevValue)
return 0;
prevValue = nd->val;
return isBST(nd->right);
}
else
return 1;
}

And here is complete program. I have created two trees - one BST and another non-bst. The nodes have to linked explicitly because the ordinary insert methods rely on BST property and would create a BST always.


#include<stdio.h>
#include<stdlib.h>
struct node
{
int val;
struct node *left;
struct node *right;
};
typedef struct node *NODEPTR;
static int prevValue;
NODEPTR create_node(int num)
{
NODEPTR temp = (NODEPTR)malloc(sizeof(struct node));
temp->val = num;
temp->left = NULL;
temp->right = NULL;
return temp;
}

NODEPTR insert_node(NODEPTR nd,NODEPTR newnode)
{
if(nd==NULL)
return newnode;/* newnode becomes root of tree*/
if(newnode->val > nd->val)
nd->right = insert_node(nd->right,newnode);
else if(newnode->val < nd->val)
nd->left = insert_node(nd->left,newnode);
return nd;
}
NODEPTR create_tree1()
{
NODEPTR n1,n2,n3,n4,n5,n6,n7,root;
n1 = create_node(10);
n2 = create_node(20);
n3 = create_node(30);
n4 = create_node(40);
n5 = create_node(50);
n6 = create_node(60);
n7 = create_node(70);
root = n3;
n3->left = n1;
n1->right = n2;
n3->right = n6;
n6->left = n4;
n4->right = n5;
n6->right = n7;
return root;
}
NODEPTR create_tree2()
{
NODEPTR n1,n2,n3,n4,n5,n6,n7,root;
n1 = create_node(10);
n2 = create_node(20);
n3 = create_node(30);
n4 = create_node(40);
n5 = create_node(50);
n6 = create_node(60);
n7 = create_node(70);
root = n3;
n3->left = n1;
n1->left = n2;
n3->right = n6;
n6->left = n4;
n4->right = n5;
n6->right = n7;
return root;
}

void in_order(NODEPTR nd)
{
if(nd!=NULL)
{
in_order(nd->left);
printf("%d---",nd->val);
in_order(nd->right);
}
}
int isBST(NODEPTR nd)
{

if(nd!=NULL)
{
if(!isBST(nd->left))
return 0;
if(nd->val<prevValue)
return 0;
prevValue = nd->val;
return isBST(nd->right);
}
else
return 1;
}


int main()
{
NODEPTR root=NULL,delnode;
int n;
root = create_tree1();
printf("\nInorder traversal\n");
in_order(root);
if(isBST(root))
printf("The tree is a binary search tree");
else
printf("The tree is not a binary search tree");
root =create_tree2();
in_order(root);
if(isBST(root))
printf("this tree is a binary search tree");
else
printf("this tree is not a binary search tree");

return 0;
}

Comments

Popular posts from this blog

Linked list in C++

A linked list is a versatile data structure. In this structure, values are linked to one another with the help of addresses. I have written in an earlier post about how to create a linked list in C.  C++ has a library - standard template library which has list, stack, queue etc. data structures. But if you were to implement these data structures yourself in C++, how will you implement? If you just use new, delete, cout and cin, and then claim it is your c++ program, you are not conforming to OOPS concept. Remember you have to "keep it together". Keep all the functions and variables together - in a class. You have to have class called linked list in which there are methods - append, delete, display, insert, find, find_last. And there will also be a data - head. Defining node We need a structure for all these nodes. A struct can be used for this purpose, just like C. struct node { int val; struct node * next; }; Next we need to define our class. W

Swap nodes of a linked list

Qn: Write a function to swap the adjacent nodes of a singly linked list.i.e. If the list has nodes as 1,2,3,4,5,6,7,8, after swapping, the list should be 2,1,4,3,6,5,8,7 Image from: https://tekmarathon.com Though the question looks simple enough, it is tricky because you don't just swap the pointers. You need to take care of links as well. So let us try to understand how to go about it. Take two adjacent nodes p1 and p2 Let prevnode be previous node of p1 Now link prevnode to p2 Link p2 to p1 Link p1 to next node of p2 So the code will be prevnode -> next = p2; p1 -> next = p2 -> next; p2 -> next = p1; But what about the start node or head? head node does not have previous node If we swap head with second node, modified head should be sent back to caller  To take care of swapping first and second nodes, we can write p1 = head; p2 = head -> next; p1 -> next = p2 -> next; p2 -> next = p1; head = p2;  Now we are read

Binary tree deletion - non-recursive

In the previous post we have seen how to delete a node of a binary search tree using recursion. Today we will see how to delete a node of BST using a non-recursive function. Let us revisit the 3 scenarios here Deleting a node with no children just link the parent to NULL Deleting a node with one child link the parent to  non-null child of node to be deleted Deleting a node with both children select the successor of node to be deleted copy successor's value into this node delete the successor In order to start, we need a function to search for a node in binary search tree. Did you know that searching in  a BST is very fast, and is of the order O(logn). To search Start with root Repeat until value is found or node is NULL If the search value is greater than node branch to right If the search value is lesser than node branch to left.  Here is the function NODEPTR find_node (NODEPTR root,NODEPTR * parent, int delval) { NODEPTR nd = root; NODEPTR pa = root; if (root -> v