Skip to main content

Implementation of binary tree in C++


A binary tree is a non-linear data structure where every node has maximum two branches - left subtree and right subtree. An empty node is also a binary tree.

In earlier posts we have seen how to insert a node to binary tree, how to traverse a tree and how to delete nodes from tree.

The functions look almost similar in C++. Except that all these functions and root pointer are all parts of the class binary tree.

That is a good thing and a bad thing. If root is a data member (so private), how do we use root as a parameter in all the recursive functions - insert, delete, inorder etc?

Easy answer would be don't use recursion. Anyway no one like them.

So we can write insert and delete functions without using recursion and even search function. But traversal functions have to be recursive.

Ok, let us write a function to return root of the tree and use it as first parameter in all traversal functions.

Here is the complete class.

You can download this code along with test program from here


struct node
{
   int num;
   node *left;
   node *right;
};
class binarytree
{
   node *root;
public:
   binarytree();
   node* create_node(int val);
   void insert( int val); 
   void inorder(node *nd);
   void preorder(node *nd);
   void postorder(node *nd);
   node *search(node *nd,int val);
   void delete_node(int val);
   node*find_parent(node *nd);
   node*find_successor(node*nd,node**parent);
   node* get_root();
};
binarytree::binarytree()
{
    root = NULL;
}
node *binarytree::create_node(int val)
{
   node *newn = new node;
   newn->num = val;
   newn->left = NULL;
   newn->right = NULL;
   return newn;
}
void binarytree::insert( int val)
{//insert a node non-recursively
    node*newnode = create_node(val);
    if(root==NULL)
    {//tree is empty
       root = newnode;
       return;
    }
    node *temp = root;
    node *parent = NULL;
    while(temp!=NULL)
    {//find the location for new node
        parent = temp;
        if(temp->num >val)
           temp = temp->left;
        else
           temp = temp->right;
     }
     //which branch
     if(parent->num >val)
        parent->left = newnode;
     else
        parent->right = newnode;    
}

void binarytree::inorder(node *nd)
{
  if(nd!=NULL)
  {
     inorder(nd->left);
     cout<<nd->num<<"  ";
     inorder(nd->right);
   }
}
void binarytree::preorder(node *nd)
{
  if(nd!=NULL)
  {
     cout<<nd->num<<"  ";
     preorder(nd->left);   
     preorder(nd->right);
   }
}
void binarytree::postorder(node *nd)
{
  if(nd!=NULL)
  {
     postorder(nd->left);   
     postorder(nd->right);
     cout<<nd->num<<"  ";
   }
}
node* binarytree::search(node *nd, int val)
{
     if(nd==NULL)
       return nd;
     if(nd->num==val)
        return nd;
     if(nd->num > val)
       return search(nd->left,val);
     if(nd->num <val)
       return search(nd->right,val);
}
node *binarytree::find_parent(node *nd)
{
    if(nd==root)
    //root has no parent
       return NULL;
    node *temp = root;
    while(temp)
    {
       if(temp->left==nd || temp->right==nd)
          return temp;
       if(nd->num > temp->num)
         temp = temp->right;
       else if(nd->num <temp->num)
         temp = temp->left;
    }
    return NULL;
}
node*binarytree::find_successor(node*nd,node**parent)
{//successor is tree minimum of right subtree
   node*temp = nd->right;
   *parent = nd;
   while(temp->left!=NULL)
      {
      *parent=temp;
      temp = temp->left;
      }
   return temp;
}
         
void binarytree::delete_node(int val)
{
    node *dn = search(root,val);
    if(dn==NULL)
      {
        cout<<"value not found\n";
        return;
      }
     node*parent = find_parent(dn);
    if(dn->left!=NULL && dn->right!=NULL)
    {//node has both subtrees. delete successor instead
        node*successor = find_successor(dn,&parent);
        dn->num = successor->num;//copy data
        dn = successor;
    }    
   
    if(dn->left==NULL && dn->right==NULL)
    {//leaf node
       
        if(parent==NULL && dn==root)
           root = NULL;
        else if(parent==NULL)
           cout<<"Error";
        else
           if(dn==parent->left)
              parent->left = NULL;
           else if(dn==parent->right)
              parent->right = NULL;
        delete dn;
    }
    else if(dn->left==NULL||dn->right==NULL)
    {//has one child
         
         node* child = dn->left?dn->left:dn->right;
         if(dn==root)
             root = child;
         else{
            if(parent->left==dn)
              parent->left = child;
            else
             parent->right = child;
          }
          delete dn;
    }
}
node*binarytree::get_root()
{
   return root;
}
     

Comments

Popular posts from this blog

In order traversal of nodes in the range x to y

Question : Write a function for in-order traversal of nodes in the range x to y from a binary search tree. This is quite a simple function. As a first solution we can just traverse our binary search tree in inorder and display only the nodes which are in the range x to y. But if the current node has a value less than x, do we have to traverse its left subtree? No. Because all the nodes in left subtree will be smaller than x. Similarly if the current node has a key value more than y, we need not visit its right subtree. Now we are ready to write our algorithm.     if nd is NOT NULL  if nd->val >=x then visit all the nodes of left subtree of nd recursively display nd->val if nd->val <y then visit all the nodes of right subtree of nd recursively  That's all. We have our function ready. void in_order_middle (NODEPTR nd, int x, int y) { if (nd) { if (nd -> val >= x) in_order_middle(nd...

Josephus problem

Question: Write a function to delete every k th node from circular linked list until only one node is left. This has a story associated with it. Flavius Josephus was Jewish Historian from 1st century. He and 40 other soldiers were trapped in a cave by Romans. They decided to kill themselves rather than surrendering to Romans. Their method was like this. All the soldiers will stand in a circle and every k th soldier will be shot dead. Josephus said to have calculated the starting point so that he would remain alive. So we have similar problem at hand. We delete every kth node in a circular list. Eventually only one node will be left. e.g. Let us say this is our list And we are deleting every third node.  We will delete 30. Then we delete 60. Next we delete 10. Next it will be 50. Next to be deleted is 20. Next 80. This continues. Implementation   We can count k-1 nodes and delete next node. This can be repeated in  a loop. What must be the termina...

Lowest common ancestor of binary search tree

Question : Write a function to print the lowest common ancestor of two nodes in a binary search tree.  Lowest common ancestor of two nodes x and y in a binary tree is the lowest node that has both x and y as descendants. Here lowest common ancestor of 1 and 7 is 3. LCA of 13 and 7 is root - 8. And LCA of 6 and 7 is 6 itself. The program to find gets complicated for an ordinary binary tree. But for a binary search tree, it is quite simple. As we see from the diagram above, the paths to 1 and 4 are common till the node 3. And at 3 they branch in different directions. So 3 is our LCA. That is lowest common ancestor is the node where the paths to x and y from root deviate. As long as they branch in same direction, we continue to traverse. When they branch in different directions, that is the lowest common ancestor. So let us write a simple algorithm, set temp=root if temp->val >x and temp->val>y temp = temp->left else if temp->val<x and ...