Skip to main content

Towers of Hanoi

Towers of Hanoi is a popular mathematical puzzle invented in 1883 by French mathematician Eduoardo Lucas. It is also a popular example in coding world because it is a typical example where a recursive solution is much easier than iterative solution.

In the puzzle, there are 3 rods and n discs of different sizes. The puzzle starts with the disks in a neat stack in ascending order of size on one rod, the smallest at the top, thus making a conical shape.

Gif file from wikipedia
Aim of the game is to transfer these  n discs to the 3rd rod, using 2nd rod as temporary location, but keeping in mind that
  • only one disc can be moved at a time.
  • a larger disc can not be placed above a smaller disc.

How do we solve this puzzle?

If some how we move n-1 discs to 2nd rod in correct order, we only have largest disc in 1st rod. And it can be moved to 3rd rod.

So now we need to find a method of moving n-1 discs from 1st rod to 2nd rod in correct order. Again we can use 3rd rod for intermediate storage. Why don't we move n-2 rods from 1st to 3rd rod and then we only have to move n-1th disc from 1st to 2nd rod.

So this is recursion. And we can write our algorithm as
  • recursively move n-1 discs from source rod to extra rod
  • move nth disc from source rod to target rod
  • recursively move n-1 discs from extra rod to target rod
And here is C code for the function.

void move_discs(int numdisks,char from,char to, char middle)
{
if(numdisks>0){
move_discs(numdisks-1,from,middle,to);
printf("Move disk %d from rod %c to rod %c\n",numdisks,from,to);
move_discs(numdisks-1,middle,to,from);
}
}

move_discs is called recursively for n-1 discs for moving from from rod to middle rod. And then nth rod is moved - which is represented by printf function.

next move_discs is called recursively for n-1 discs for moving from middle rod to to rod.

The base case is when n is 0, where recursion is not called.


For 3 discs, the output appears like this

aa@dell:~/dsPrograms$ ./a.out
Enter the number of discs3
Move disk 1 from rod A to rod C
Move disk 2 from rod A to rod B
Move disk 1 from rod C to rod B
Move disk 3 from rod A to rod C
Move disk 1 from rod B to rod A
Move disk 2 from rod B to rod C
Move disk 1 from rod A to rod C

And here we have driver program.


#include<stdio.h>
void move_discs(int numdisks,char from,char to, char middle)
{
if(numdisks>0){
move_discs(numdisks-1,from,middle,to);
printf("Move disk %d from rod %c to rod %c\n",numdisks,from,to);
move_discs(numdisks-1,middle,to,from);
}
}
int main()
{
int n;
printf("Enter the number of discs");
scanf("%d",&n);
move_discs(n,'A','C','B');
return 0;
}


Comments

Popular posts from this blog

Introduction to AVL tree

AVL tree is a balanced binary search tree where the difference between heights of two sub trees is maximum 1. Why balanced tree A binary tree is good data structure because search operation here is of the order of O(logn). But this is true if the tree is balanced - which means the left and right subtrees are almost equal in height. If not balanced, search operation will take longer.  In worst case, if the tree has only one branch, then search is of the order O(n). Look at this example.  Here all nodes have only right children.  To search a value in this tree, we need upto 7 iterations, which is O(n). So this tree is very very inefficient. One way of making the tree efficient is to, balance the tree and make sure that height of two branches of each node are almost equal. Height of a node Height of a node is the distance between the node and its extreme child.  In the above a diagram, height of 37 is 3 and height of left child of 37 is 0 and right child of 37 is 2. Bal...

Balanced brackets

Have you observed something? When ever you are writing code using any IDE, if you write mismatched brackets, immediately an error is shown by IDE. So how does IDE  know if an expression is having balanced brackets? For that, the expression must have equal number of opening and closing brackets of matching types and also they must be in correct order. Let us look at some examples (a+b)*c+d*{e+(f*g)}   - balanced (p+q*[r+u )] - unbalanced (p+q+r+s) ) - unbalanced (m+n*[p+q]+{g+h}) - balanced So we do we write a program to check if an expression is having balanced brackets? We do need to make use of stack to store the brackets. The algorithm is as follows Scan a character - ch from the expression If the character is opening bracket, push it to stack If the character is closing bracket pop a character from stack If popped opening bracket and ch are not of same type ( ( and ) or [ and ] ) stop the function and return false Repeat steps 2 and 3 till all characters are scanned. On...

Program to delete a node from linked list

How do you remove a node from a linked list? If you have to delete a node, first you need to search the node. Then you should find its previous node. Then you should link the previous node to the next node. If node containing 8 has to be deleted, then n1 should be pointing to n2. Looks quite simple. Isn't it? But there are at least two special cases you have to consider. Of course, when the node is not found. If the node is first node of the list viz head. If the node to be deleted is head node, then if you delete, the list would be lost. You should avoid that and make the second node as the head node. So it becomes mandatory that you return the changed head node from the function.   Now let us have a look at the code. #include<stdio.h> #include<stdlib.h> struct node { int data; struct node * next; }; typedef struct node * NODEPTR; NODEPTR create_node ( int value) { NODEPTR temp = (NODEPTR) malloc( size...