Skip to main content

Introduction to AVL tree

AVL tree is a balanced binary search tree where the difference between heights of two sub trees is maximum 1.

Why balanced tree

A binary tree is good data structure because search operation here is of the order of O(logn). But this is true if the tree is balanced - which means the left and right subtrees are almost equal in height. If not balanced, search operation will take longer. 

In worst case, if the tree has only one branch, then search is of the order O(n). Look at this example. 

Here all nodes have only right children.  To search a value in this tree, we need upto 7 iterations, which is O(n).

So this tree is very very inefficient.







One way of making the tree efficient is to, balance the tree and make sure that height of two branches of each node are almost equal.

Height of a node

Height of a node is the distance between the node and its extreme child. 

In the above a diagram, height of 37 is 3 and height of left child of 37 is 0 and right child of 37 is 2.

Balancing a node

A node is rotated, in such a way that order of the elements is retained, but the node becomes more balanced. 

In the above example, if we rotate the node containing 38 and make 37 as left child of 38, the tree is still in correct order, but is better balanced. 

So we have performed single left rotation on the node.

When a node is inserted to an AVL tree, it needs a either a single rotation or a double rotation. But if a node is deleted from AVL tree, then the nodes need to be rotated successively until root is reached.

Comments

Popular posts from this blog

Delete a node from doubly linked list

Deletion operation in DLL is simpler when compared to SLL. Because we don't have to go in search of previous node of to-be-deleted node.  Here is how you delete a node Link previous node of node of to-be-deleted to next node. Link next node of node of to-be-deleted to previous node. Free the memory of node of to-be-deleted Simple, isn't it. The code can go like this. prevnode = delnode->prev; nextnode = delnode->next; prevnode->next = nextnode; nextnode->prev = prevnode; free(delnode); And that is it. The node delnode is deleted. But we should always consider boundary conditions. What happens if we are trying to delete the first node or last node? If first node is to be deleted, its previous node is NULL. Hence step 3 should not be used.  And also, once head is deleted, nextnode becomes head . Similarly if last node is to be deleted, nextnode is NULL. Hence step 4 is as strict NO NO. And we should set prevnode to tail. After we put these things together, we have...

Program to delete a node from linked list

How do you remove a node from a linked list? If you have to delete a node, first you need to search the node. Then you should find its previous node. Then you should link the previous node to the next node. If node containing 8 has to be deleted, then n1 should be pointing to n2. Looks quite simple. Isn't it? But there are at least two special cases you have to consider. Of course, when the node is not found. If the node is first node of the list viz head. If the node to be deleted is head node, then if you delete, the list would be lost. You should avoid that and make the second node as the head node. So it becomes mandatory that you return the changed head node from the function.   Now let us have a look at the code. #include<stdio.h> #include<stdlib.h> struct node { int data; struct node * next; }; typedef struct node * NODEPTR; NODEPTR create_node ( int value) { NODEPTR temp = (NODEPTR) malloc( size...

Program to create a Linked List in C

An array is a commonly used data structure in most of the languages. Because it is simple, it needs O(1) time for accessing elements. It is also compact. But an array has a serious drawback - it can not grow or shrink. You need to estimate the array size and define it during compile time. This drawback is not present a linked list. A linked list is a data structure which can grow or shrink dynamically.  A linked list has nodes each of which contain  contain  data and a link to next node . These nodes are dynamically allocated structures. If you need more nodes, you just need to allocate memory for these and link these nodes to the existing list. The nodes of a linked list have to be defined as self-referential structures in C. That is structures with data members and one member which is a pointer to the structure of same type.  This pointer will work as a link to next node. struct node { int data; struct node * next; //pointer to another node }...