Skip to main content

Convert a BST to a DLL

I came across this question in the net.

Given a binary search tree, convert this into a sorted doubly linked list. Do not create any nodes, but just modify the links.

Just like a DLL, binary tree node also has two links. But they are named left and right. What if we assume left is previous link and right is next link? OK, we don't even have to modify the structure of the nodes.

Next important part is "sorted". We need a sorted DLL. Don't you get the idea now. Which traversal visits the nodes in ascending order or gives sorted output?

In order traversal! That's right. So we need to visit the nodes in in-order traversal, store previous node in a static variable, and link this previous node to the next node visited using previous (left) and next(right) links.

Now how do we determine the head of DLL? It should be the tree-minimum. So we can find tree minimum and set this as head. Or we can use in order traversal and set the node which has no previous node visited as head.


void convert_to_dll(NODEPTR nd,NODEPTR*headptr)
{
static NODEPTR prevnode;
if(nd!=NULL)
{
convert_to_dll(nd->left,headptr);
if(prevnode!=NULL){
prevnode->right = nd;
nd->left = prevnode;
}
else{
*headptr = nd;
}
prevnode = nd;
convert_to_dll(nd->right,headptr);
}
}

Now let us look at the complete program.


#include<stdio.h>
#include<stdlib.h>
struct node
{
int val;
struct node *left;
struct node *right;
};
typedef struct node *NODEPTR;

NODEPTR create_node(int num)
{
NODEPTR temp = (NODEPTR)malloc(sizeof(struct node));
temp->val = num;
temp->left = NULL;
temp->right = NULL;
return temp;
}

NODEPTR insert_node(NODEPTR nd,NODEPTR newnode)
{
if(nd==NULL)
return newnode;/* newnode becomes root of tree*/
if(newnode->val > nd->val)
nd->right = insert_node(nd->right,newnode);
else if(newnode->val < nd->val)
nd->left = insert_node(nd->left,newnode);
return nd;
}

void convert_to_dll(NODEPTR nd,NODEPTR*headptr)
{
static NODEPTR prevnode;
if(nd!=NULL)
{
convert_to_dll(nd->left,headptr);
if(prevnode!=NULL){
prevnode->right = nd;
nd->left = prevnode;
}
else{
*headptr = nd;
}
prevnode = nd;
convert_to_dll(nd->right,headptr);
}
}

void print_dll(NODEPTR nd)
{
NODEPTR temp = nd;
while(nd)
{
printf("%d---->",nd->val);
temp = nd; nd = nd->right;
}
printf("\nnow in reverse");
nd = temp;
while(nd)
{
printf("%d---->",nd->val);
temp = nd; nd = nd->left;
}
}
int main()
{
NODEPTR root=NULL,delnode,head;
int n;
do
{
NODEPTR newnode;
printf("Enter value of node(-1 to exit):");
scanf("%d",&n);
if(n!=-1)
{
newnode = create_node(n);
root = insert_node(root,newnode);
}
} while (n!=-1);

printf("\nInorder traversal\n");
head = NULL;
convert_to_dll(root,&head);
print_dll(head);
return 0;
}

The driver program traverses the DLL in forward as well as reverse.

Comments

Popular posts from this blog

Introduction to AVL tree

AVL tree is a balanced binary search tree where the difference between heights of two sub trees is maximum 1. Why balanced tree A binary tree is good data structure because search operation here is of the order of O(logn). But this is true if the tree is balanced - which means the left and right subtrees are almost equal in height. If not balanced, search operation will take longer.  In worst case, if the tree has only one branch, then search is of the order O(n). Look at this example.  Here all nodes have only right children.  To search a value in this tree, we need upto 7 iterations, which is O(n). So this tree is very very inefficient. One way of making the tree efficient is to, balance the tree and make sure that height of two branches of each node are almost equal. Height of a node Height of a node is the distance between the node and its extreme child.  In the above a diagram, height of 37 is 3 and height of left child of 37 is 0 and right child of 37 is 2. Bal...

Reverse a singly linked list

One of the commonly used interview question is - how do you reverse a linked list? If you talk about a recursive function to print the list in reverse order, you are so wrong. The question is to reverse the nodes of list. Not print the nodes in reverse order. So how do you go about reversing the nodes. You need to take each node and link it to previous node. But a singly linked list does not have previous pointer. So if n1 is current node, n2 = n1->next, you should set     n2->next = NULL But doing this would cut off the list at n2. So the solution is recursion. That is to reverse n nodes  n1,n2,n3... of a list, reverse the sub list from n2,n3,n4.... link n2->next to n1 set n1->next to NULL The last step is necessary because, once we reverse the list, first node must become last node and should be pointing to NULL. But now the difficulty is regarding the head? Where is head and how do we set it? Once we reach end of list  viz n1->next ==NULL, th...

Program to delete a node from linked list

How do you remove a node from a linked list? If you have to delete a node, first you need to search the node. Then you should find its previous node. Then you should link the previous node to the next node. If node containing 8 has to be deleted, then n1 should be pointing to n2. Looks quite simple. Isn't it? But there are at least two special cases you have to consider. Of course, when the node is not found. If the node is first node of the list viz head. If the node to be deleted is head node, then if you delete, the list would be lost. You should avoid that and make the second node as the head node. So it becomes mandatory that you return the changed head node from the function.   Now let us have a look at the code. #include<stdio.h> #include<stdlib.h> struct node { int data; struct node * next; }; typedef struct node * NODEPTR; NODEPTR create_node ( int value) { NODEPTR temp = (NODEPTR) malloc( size...