Skip to main content

Conversion of postfix expression to infix

How do we convert a postfix expression to infix expression?

A postfix expression or a "Reverse polish notation" is useful for programming. Because our programs can easily evaluate a postfix expression.

But for humans, postfix expressions are difficult to understand.

So is it possible to convert a given postfix expression to infix expression? Why not? It is possible with the help of stack data structure. 

Remember that when converting an expression from infix to postfix, we used operator stack. But in this case we need an operand stack.

What we need to do is - we extract values from expression. If there is an operand, we push it to stack. If there is an operator encountered, we pop two most recent values from stack, apply operator to them, enclose them in paranthesis and push the expression back to stack.

This procedure is continued until the entire expression is scanned. In the next step, the content of stack is popped out - which will be our infix expression.

So let me bullet these statements
  1. scan a character from postfix expression.
  2. if the character is an operand, push it to stack
  3. if the character scanned is an operator 
    1. pop expr1
    2. pop expr2
    3. form expr3 as (expr1 operator expr2)
  4. push expr3 to stack
  5. Repeat the steps 1 to 3, until all characters are scanned 
  6. pop content of stack as infix expression 
Let us look at an example postfix expression  53*4+

characterstackComments
5 5
35 3
*5  3 is popped
      5 is popped
     (5*3) is pushed
(5*3) 
4(5*3) 4
(5*3) - 4 is popped    
*   (5*3) is popped
  ((5*3)+4) is pushed
((5*3)+4)

Next the stack has ( (5*3)+4) which is popped. And that is our infix expression.

Let us write our C function for this now.


void convert(char *postfix,char *infix)
{
char ch;
char oper1,oper2,opernew;
char *expr1=(char*)malloc(30);
char *expr2=(char*)malloc(30);
char *expr3 = (char*)malloc(60);
struct node *top = NULL;
while(ch =*postfix++)
{
if(isdigit(ch))
{
char str[] = {ch,0};
top = push(str,top);
}
else if(is_operator(ch))
{
strcpy(expr1, pop(&top));
if(expr1==NULL)
{
printf("Error");
break;
}
strcpy(expr2 ,pop(&top));
if(expr2==NULL)
{
printf("Error");
break;
}
strcpy(expr3, concat(expr2,expr1,ch));
top = push(expr3,top);
}
}
strcpy(infix,pop(&top));
}


And here is the driver program. As you can see from the code, I have used linked list implementation of stack of strings here.


#include<stdio.h>
#include<string.h>
#include<stdlib.h>
struct node
{
char str[30];
struct node *next;
};
struct node *createnode(char *str)
{
struct node *newnode = (struct node*) malloc(sizeof(struct node));
strcpy(newnode->str,str);
newnode->next = NULL;
}

struct node * push(char *str,struct node *top)
{
struct node *newnode = createnode(str);
newnode->next = top;
top = newnode;
return top;
}

char * pop(struct node ** top)
{
static char str[30];
if(top==NULL)
return NULL;
struct node * temp = *top;
*top =(*top)->next;
strcpy(str,temp->str);

free(temp);
return str;
}

int is_operator(char ch)
{
switch(ch)
{
case '+':
case '-':
case '/':
case '*':
case '^':
return 1;
default : return 0;
}
}

char *concat(char *s1,char *s2,char ch)
{
char *result = (char*)malloc(60);
int i=1;
result[0] = '(';
while(*s1)
result[i++]=*s1++;
result[i++]=ch;
while(*s2)
result[i++]=*s2++;
result[i++]=')';//enclose in parantheses
result[i]=0;
return result;
}
void convert(char *postfix,char *infix)
{
char ch;
char oper1,oper2,opernew;
char *expr1=(char*)malloc(30);
char *expr2=(char*)malloc(30);
char *expr3 = (char*)malloc(60);
struct node *top = NULL;
while(ch =*postfix++)
{
if(isdigit(ch))
{
char str[] = {ch,0};
top = push(str,top);
}
else if(is_operator(ch))
{
strcpy(expr1, pop(&top));
if(expr1==NULL)
{
printf("Error");
break;
}
strcpy(expr2 ,pop(&top));
if(expr2==NULL)
{
printf("Error");
break;
}
strcpy(expr3, concat(expr2,expr1,ch));
top = push(expr3,top);
}
}
//strcpy(expr3 = pop(&top);
strcpy(infix,pop(&top));
}


int main()
{
char postfix[30];char infix[30];
double ans;
printf("Enter postfix expression :");
scanf("%s",postfix);
convert(postfix,infix);
printf("The expression in infix is %s",infix);
return 0;
}

Comments

Popular posts from this blog

Introduction to AVL tree

AVL tree is a balanced binary search tree where the difference between heights of two sub trees is maximum 1. Why balanced tree A binary tree is good data structure because search operation here is of the order of O(logn). But this is true if the tree is balanced - which means the left and right subtrees are almost equal in height. If not balanced, search operation will take longer.  In worst case, if the tree has only one branch, then search is of the order O(n). Look at this example.  Here all nodes have only right children.  To search a value in this tree, we need upto 7 iterations, which is O(n). So this tree is very very inefficient. One way of making the tree efficient is to, balance the tree and make sure that height of two branches of each node are almost equal. Height of a node Height of a node is the distance between the node and its extreme child.  In the above a diagram, height of 37 is 3 and height of left child of 37 is 0 and right child of 37 is 2. Bal...

Balanced brackets

Have you observed something? When ever you are writing code using any IDE, if you write mismatched brackets, immediately an error is shown by IDE. So how does IDE  know if an expression is having balanced brackets? For that, the expression must have equal number of opening and closing brackets of matching types and also they must be in correct order. Let us look at some examples (a+b)*c+d*{e+(f*g)}   - balanced (p+q*[r+u )] - unbalanced (p+q+r+s) ) - unbalanced (m+n*[p+q]+{g+h}) - balanced So we do we write a program to check if an expression is having balanced brackets? We do need to make use of stack to store the brackets. The algorithm is as follows Scan a character - ch from the expression If the character is opening bracket, push it to stack If the character is closing bracket pop a character from stack If popped opening bracket and ch are not of same type ( ( and ) or [ and ] ) stop the function and return false Repeat steps 2 and 3 till all characters are scanned. On...

Program to delete a node from linked list

How do you remove a node from a linked list? If you have to delete a node, first you need to search the node. Then you should find its previous node. Then you should link the previous node to the next node. If node containing 8 has to be deleted, then n1 should be pointing to n2. Looks quite simple. Isn't it? But there are at least two special cases you have to consider. Of course, when the node is not found. If the node is first node of the list viz head. If the node to be deleted is head node, then if you delete, the list would be lost. You should avoid that and make the second node as the head node. So it becomes mandatory that you return the changed head node from the function.   Now let us have a look at the code. #include<stdio.h> #include<stdlib.h> struct node { int data; struct node * next; }; typedef struct node * NODEPTR; NODEPTR create_node ( int value) { NODEPTR temp = (NODEPTR) malloc( size...