Skip to main content

Binary tree functions

In this post we will write some functions for a binary search tree.

Find minimum of a binary search tree:

This function is quite simple. In a binary search tree, every node has values smaller than itself on left sub tree and values larger than itself on right subtree. So as we move to left, values get smaller and smaller.

Which means that the left extreme node is our minimum value. So if you keep traversing to left until you reach NULL, the last node is tree minimum.

int tree_minimum(NODEPTR nd)
{
while(nd->left !=NULL)
nd = nd->left;
return nd->val;
}


Count the total number of nodes in a binary search tree:


This one needs a recursive function.

Total number of nodes in a binary tree = total number of nodes in its left subtree + 1 + total number of nodes in right subtree

And there is no recursion if node is NULL and the call must return 0.

And here is the function.


int count_nodes(NODEPTR nd)
{
if(nd==NULL)
return 0;
else
return count_nodes(nd->left)+1+count_nodes(nd->right);
}

Search for a node in a BST

Let us discuss non-recursive searching of a value.

Binary search tree is an ordered tree. So when we compare search value with key of current node, if search value is greater than node value, we should branch to right. But if search value is smaller, we should branch to left. We should continue this process until value is found or a NULL is encountered.

  1. Start from root
  2. If key value of node matches search value return
  3. If key value of node is greater than search value, set node = node->left
  4. If key value of node is smaller than search value, set node = node->right
  5. Repeat steps 2 to 4 until match is found or node is NULL


NODEPTR search_node(NODEPTR root, int num)
{
NODEPTR temp = root;
while(temp!=NULL)
{
if(temp->val>num)
temp = temp->left;
else if(temp->val<num)
temp = temp->right;
else//we found a match
return temp;
}
return NULL;//no match
}

Finally let us look at a function to count the number of leaf nodes.

Count the number of leaf nodes

This function would be similar to count function. But here we increment count only if node has left child as NULL and right child as NULL.


int count_leaf_nodes(NODEPTR nd)
{
if(nd==NULL)
return 0;
else if(nd->left ==NULL && nd->right==NULL)
return 1;
else
return count_leaf_nodes(nd->left)+count_leaf_nodes(nd->right);
}


Comments

Popular posts from this blog

Josephus problem

Question: Write a function to delete every k th node from circular linked list until only one node is left. This has a story associated with it. Flavius Josephus was Jewish Historian from 1st century. He and 40 other soldiers were trapped in a cave by Romans. They decided to kill themselves rather than surrendering to Romans. Their method was like this. All the soldiers will stand in a circle and every k th soldier will be shot dead. Josephus said to have calculated the starting point so that he would remain alive. So we have similar problem at hand. We delete every kth node in a circular list. Eventually only one node will be left. e.g. Let us say this is our list And we are deleting every third node.  We will delete 30. Then we delete 60. Next we delete 10. Next it will be 50. Next to be deleted is 20. Next 80. This continues. Implementation   We can count k-1 nodes and delete next node. This can be repeated in  a loop. What must be the termina...

Lowest common ancestor of binary search tree

Question : Write a function to print the lowest common ancestor of two nodes in a binary search tree.  Lowest common ancestor of two nodes x and y in a binary tree is the lowest node that has both x and y as descendants. Here lowest common ancestor of 1 and 7 is 3. LCA of 13 and 7 is root - 8. And LCA of 6 and 7 is 6 itself. The program to find gets complicated for an ordinary binary tree. But for a binary search tree, it is quite simple. As we see from the diagram above, the paths to 1 and 4 are common till the node 3. And at 3 they branch in different directions. So 3 is our LCA. That is lowest common ancestor is the node where the paths to x and y from root deviate. As long as they branch in same direction, we continue to traverse. When they branch in different directions, that is the lowest common ancestor. So let us write a simple algorithm, set temp=root if temp->val >x and temp->val>y temp = temp->left else if temp->val<x and ...

In order traversal of nodes in the range x to y

Question : Write a function for in-order traversal of nodes in the range x to y from a binary search tree. This is quite a simple function. As a first solution we can just traverse our binary search tree in inorder and display only the nodes which are in the range x to y. But if the current node has a value less than x, do we have to traverse its left subtree? No. Because all the nodes in left subtree will be smaller than x. Similarly if the current node has a key value more than y, we need not visit its right subtree. Now we are ready to write our algorithm.     if nd is NOT NULL  if nd->val >=x then visit all the nodes of left subtree of nd recursively display nd->val if nd->val <y then visit all the nodes of right subtree of nd recursively  That's all. We have our function ready. void in_order_middle (NODEPTR nd, int x, int y) { if (nd) { if (nd -> val >= x) in_order_middle(nd...