Skip to main content

Binary tree deletion

Do not get all scared and worried. It is not rocket science (or as I would like to call it - it is not regex).

Remember deleting a node from linked list. When you deleted a node, you did the following 2 steps
  1. Free the memory of the node
  2. Link the previous node of the deleted node to the next node

You will have to do these things in binary tree too. But the difficulty here is do you link the previous node - or parent node in tree terminology, to the left child of deleted node? Or to the right child? You can not link both children, as the parent already may have one child node.

So before we solve this, let us categorize the deletion with the help of a diagram.



Consider the cases

  1. The node to be deleted is a leaf node. That is, it does not have left or right child. In this case, link the parent to NULL in place of deleted node. 
    • If you want to delete 13 - which is a leaf node, you set 14->left to NULL and free memory of node 13.
    • If you want to delete 7 - which is also a leaf node and is the right child of 6, you set 6->right to NULL and free 6.
  2. The node is to deleted is having only one subtree and hence one child node. In this case link the parent to this child node.
    • If you want to delete 14 - which has only left child node, you link the only child of 14 to the parent. That is you set 10->right to 14->left. Now 10 will have right child as 13. And BST property holds good.
    • Instead if you want to delete 10 which has only right subtree - 14 and 13, you link parent of 10 to  14. That is, you set 8->right to 14. 
  3. The node to be deleted has both branches. In this case, you find the successor of the node - which will be treeminimum of right sub tree. Copy the data of this tree minimum to the node to be deleted. And finally delete this tree minimum.
    • If you want to delete 3, you search for minimum of right subtree of 3. Right subtree of 3 has 3 nodes in it, 6,4 and 7. Minimum of this is 4. Copy the data - 4 into the node to be deleted -which is 3. Now you delete the node with 4.  
Delete the node with only left subtree

Delete the node with only right subtree

Delete the node with both subtrees

 Why tree minimum of right subtree?

When you delete a node, its place can be taken by its predecessor or its successor. We are choosing successor here is a substitute for node to be deleted. And we are preserving its information by copying it into the original to-be deleted node. 

Again, why not any other node? Because this subtree minimum will be either a leaf node or it will have only right branch. So we are reducing it to case 2. - that is node with only one branch or 0 branches. 

Next let us look at the code. I have written a recursive function here. You can also a find function to find tree minimum.

The advantage of recursive function is, you don't have to write separate functions to search a node, find the parent node etc.  Of course at the expense of simplicity.

NODEPTR delete_node(NODEPTR nd,int delval)
{
if(nd==NULL)
return nd;
if(nd->val >delval)
nd->left = delete_node(nd->left,delval);
else if(nd->val < delval)
nd->right = delete_node(nd->right,delval);
else/*node found*/
{
if(nd->left==NULL && nd->right==NULL)/*leaf node*/
{
free(nd);
nd = NULL;
}
else if(nd->left==NULL)/*only right child*/
{
NODEPTR temp = nd->right;
free(nd);
nd =temp;
}
else if(nd->right==NULL)/*only left child*/
{
NODEPTR temp = nd->left;
free(nd);
nd = temp;
}
else/*both branches*/
{
NODEPTR min_node = find_rightst_min(nd->right);
nd->val = min_node->val;/*copy value of minimumNode*/
nd->right = delete_node(nd->right,min_node->val);/*delete minimumNode*/
}
}
return nd;
}

/*go left till you reach null*/
NODEPTR find_rightst_min(NODEPTR nd)
{
NODEPTR temp = nd;
while(nd)
{
temp = nd;
nd = nd->left;
}
return temp;
}

Now let us write the complete program where you keep deleting different nodes in a loop.


#include<stdio.h>
#include<stdlib.h>
struct node
{
int val;
struct node *left;
struct node *right;
};
typedef struct node *NODEPTR;

NODEPTR create_node(int num)
{
NODEPTR temp = (NODEPTR)malloc(sizeof(struct node));
temp->val = num;
temp->left = NULL;
temp->right = NULL;
return temp;
}

NODEPTR insert_node(NODEPTR nd,NODEPTR newnode)
{
if(nd==NULL)
return newnode;/* newnode becomes root of tree*/
if(newnode->val > nd->val)
nd->right = insert_node(nd->right,newnode);
else if(newnode->val < nd->val)
nd->left = insert_node(nd->left,newnode);
return nd;
}

void in_order(NODEPTR nd)
{
if(nd!=NULL)
{
in_order(nd->left);
printf("%d---",nd->val);
in_order(nd->right);
}
}

void pre_order(NODEPTR nd)
{
if(nd!=NULL)
{
printf("%d---",nd->val);
pre_order(nd->left);
pre_order(nd->right);

}
}

void post_order(NODEPTR nd)
{
if(nd!=NULL)
{
post_order(nd->left);
post_order(nd->right);
printf("%d---",nd->val);
}
}


/*go left till you reach null*/
NODEPTR find_rightst_min(NODEPTR nd)
{
NODEPTR temp = nd;
while(nd)
{
temp = nd;
nd = nd->left;
}
return temp;
}
NODEPTR delete_node(NODEPTR nd,int delval)
{
if(nd==NULL)
return nd;
if(nd->val >delval)
nd->left = delete_node(nd->left,delval);
else if(nd->val < delval)
nd->right = delete_node(nd->right,delval);
else/*node found*/
{
if(nd->left==NULL && nd->right==NULL)
{
free(nd);
nd = NULL;
}
else if(nd->left==NULL)/*leaf node*/
{
NODEPTR temp = nd->right;
free(nd);
nd =temp;
}
else if(nd->right==NULL)/*leaf node*/
{
NODEPTR temp = nd->left;
free(nd);
nd = temp;
}
else
{
NODEPTR min_node = find_rightst_min(nd->right);
nd->val = min_node->val;
nd->right = delete_node(nd->right,min_node->val);
}

}
return nd;


}
int main()
{
NODEPTR root=NULL,delnode;
int n;
do
{
NODEPTR newnode;
printf("Enter value of node(-1 to exit):");
scanf("%d",&n);
if(n!=-1)
{
newnode = create_node(n);
root = insert_node(root,newnode);
}
} while (n!=-1);

printf("\nInorder traversal\n");
in_order(root);


while(1){
printf("Enter node to be deleted(-1 to stop)");
scanf("%d",&n);
if(n==-1)
break;
root = delete_node(root,n);
printf("now tree is");
in_order(root);
}
return 0;
}

Comments

Popular posts from this blog

Introduction to AVL tree

AVL tree is a balanced binary search tree where the difference between heights of two sub trees is maximum 1. Why balanced tree A binary tree is good data structure because search operation here is of the order of O(logn). But this is true if the tree is balanced - which means the left and right subtrees are almost equal in height. If not balanced, search operation will take longer.  In worst case, if the tree has only one branch, then search is of the order O(n). Look at this example.  Here all nodes have only right children.  To search a value in this tree, we need upto 7 iterations, which is O(n). So this tree is very very inefficient. One way of making the tree efficient is to, balance the tree and make sure that height of two branches of each node are almost equal. Height of a node Height of a node is the distance between the node and its extreme child.  In the above a diagram, height of 37 is 3 and height of left child of 37 is 0 and right child of 37 is 2. Bal...

Balanced brackets

Have you observed something? When ever you are writing code using any IDE, if you write mismatched brackets, immediately an error is shown by IDE. So how does IDE  know if an expression is having balanced brackets? For that, the expression must have equal number of opening and closing brackets of matching types and also they must be in correct order. Let us look at some examples (a+b)*c+d*{e+(f*g)}   - balanced (p+q*[r+u )] - unbalanced (p+q+r+s) ) - unbalanced (m+n*[p+q]+{g+h}) - balanced So we do we write a program to check if an expression is having balanced brackets? We do need to make use of stack to store the brackets. The algorithm is as follows Scan a character - ch from the expression If the character is opening bracket, push it to stack If the character is closing bracket pop a character from stack If popped opening bracket and ch are not of same type ( ( and ) or [ and ] ) stop the function and return false Repeat steps 2 and 3 till all characters are scanned. On...

Program to delete a node from linked list

How do you remove a node from a linked list? If you have to delete a node, first you need to search the node. Then you should find its previous node. Then you should link the previous node to the next node. If node containing 8 has to be deleted, then n1 should be pointing to n2. Looks quite simple. Isn't it? But there are at least two special cases you have to consider. Of course, when the node is not found. If the node is first node of the list viz head. If the node to be deleted is head node, then if you delete, the list would be lost. You should avoid that and make the second node as the head node. So it becomes mandatory that you return the changed head node from the function.   Now let us have a look at the code. #include<stdio.h> #include<stdlib.h> struct node { int data; struct node * next; }; typedef struct node * NODEPTR; NODEPTR create_node ( int value) { NODEPTR temp = (NODEPTR) malloc( size...