In the previous post we have seen how to delete a node of a binary search tree using recursion.
Today we will see how to delete a node of BST using a non-recursive function.
Let us revisit the 3 scenarios here
To search
Here is the functionToday we will see how to delete a node of BST using a non-recursive function.
Let us revisit the 3 scenarios here
- Deleting a node with no children
- just link the parent to NULL
- Deleting a node with one child
- link the parent to non-null child of node to be deleted
- Deleting a node with both children
- select the successor of node to be deleted
- copy successor's value into this node
- delete the successor
To search
- Start with root
- Repeat until value is found or node is NULL
- If the search value is greater than node branch to right
- If the search value is lesser than node branch to left.
NODEPTR find_node(NODEPTR root,NODEPTR *parent,int delval)
{
NODEPTR nd = root;
NODEPTR pa = root;
if(root->val==delval)
{
*parent = NULL;
return root;
}
while(1 )
{
if(nd==NULL)
return NULL;
if(delval < nd->val)
{
pa = nd;
nd = nd->left;
}
else if(delval>nd->val)
{
pa = nd;
nd = nd->right;
}
else
{/* we found a match */
*parent = pa;
return nd;
}
}
}
What is this function? Looks complicated? Not really. We have just added some codes to find the parent also. Remember we need parent of the node to be deleted too. Before we branch to left or to right, we set current node as parent.
Next we have to write deletion function
NODEPTR delete_non_recursive( NODEPTR root,NODEPTR delnode,NODEPTR parent)
{
NODEPTR pa;
if (delnode->left!=NULL && delnode->right!=NULL)/*has both subtrees*/
{
NODEPTR succ = find_rightst_min(delnode,&parent);
delnode->val = succ->val;
delnode=succ;
}
if (delnode->left!=NULL)
{
/*has only left child*/
if(parent==NULL){
/*we are deleting root*/
root = delnode->left;
}else
{
if(parent->left ==delnode)
parent->left = delnode->left;
else
parent->right = delnode->left;
}
free(delnode);
}
else if(delnode->right!=NULL)
{/*has only right subtree*/
if(parent==NULL)/*we are deleting root*/
{
root = delnode->right;
}
else{
/*has only right child*/
if(parent->left==delnode)
parent->left = delnode->right;
else
parent->right = delnode->right;
}
free(delnode);
}
else{
/* leaf node */
if(parent==NULL)
{
root = NULL;
}
else{
if(parent->left==delnode)
{
parent->left = NULL;
free(delnode);
}
else
{
parent->right = NULL;
free(delnode);
}
}
}
return root;
}
The special case here is what about deletion of root? If we delete the root, there is no parent. Parent has been set to NULL in find_node function for this case. So in each of the 3 scenarios, we check if parent is null. If parent is null then root is reconfigured to either a non-null child of node to be deleted or to null if root is the only node in the tree.
Now it is time for complete program.
#include<stdio.h>
#include<stdlib.h>
struct node
{
int val;
struct node *left;
struct node *right;
};
typedef struct node *NODEPTR;
NODEPTR create_node(int num)
{
NODEPTR temp = (NODEPTR)malloc(sizeof(struct node));
temp->val = num;
temp->left = NULL;
temp->right = NULL;
return temp;
}
NODEPTR insert_node(NODEPTR nd,NODEPTR newnode)
{
if(nd==NULL)
return newnode;/* newnode becomes root of tree*/
if(newnode->val > nd->val)
nd->right = insert_node(nd->right,newnode);
else if(newnode->val < nd->val)
nd->left = insert_node(nd->left,newnode);
return nd;
}
void in_order(NODEPTR nd)
{
if(nd!=NULL)
{
in_order(nd->left);
printf("%d---",nd->val);
in_order(nd->right);
}
}
void pre_order(NODEPTR nd)
{
if(nd!=NULL)
{
printf("%d---",nd->val);
pre_order(nd->left);
pre_order(nd->right);
}
}
void post_order(NODEPTR nd)
{
if(nd!=NULL)
{
post_order(nd->left);
post_order(nd->right);
printf("%d---",nd->val);
}
}
/*go left till you reach null*/
NODEPTR find_rightst_min(NODEPTR nd,NODEPTR *parent)
{
NODEPTR pa = nd;
nd = nd->right;
while(nd->left)
{
pa = nd;
nd = nd->left;
}
*parent = pa;
return nd;
}
NODEPTR find_node(NODEPTR root,NODEPTR *parent,int delval)
{
NODEPTR nd = root;
NODEPTR pa = root;
if(root->val==delval)
{
*parent = NULL;
return root;
}
while(1 )
{
if(nd==NULL)
return NULL;
if(delval < nd->val)
{
pa = nd;
nd = nd->left;
}
else if(delval>nd->val)
{
pa = nd;
nd = nd->right;
}
else
{/* we found a match */
*parent = pa;
return nd;
}
}
}
NODEPTR delete_non_recursive( NODEPTR root,NODEPTR delnode,NODEPTR parent)
{
NODEPTR pa;
if (delnode->left!=NULL && delnode->right!=NULL)
{
NODEPTR succ = find_rightst_min(delnode,&parent);
delnode->val = succ->val;
delnode=succ;
}
if (delnode->left!=NULL)
{
/*has only left child*/
if(parent==NULL){
root = delnode->left;
}else/*we are not deleting root*/
{
if(parent->left ==delnode)
parent->left = delnode->left;
else
parent->right = delnode->left;
}
free(delnode);
}
else if(delnode->right!=NULL)
{
if(parent==NULL)/*we are deleting root*/
{
root = delnode->right;
}
else{
/*has only right child*/
if(parent->left==delnode)
parent->left = delnode->right;
else
parent->right = delnode->right;
}
free(delnode);
}
else{
/* leaf node */
if(parent==NULL)
{
root = NULL;
}
else{
if(parent->left==delnode)
{
parent->left = NULL;
free(delnode);
}
else
{
parent->right = NULL;
free(delnode);
}
}
}
return root;
}
int main()
{
NODEPTR root=NULL,delnode;
int n;
do
{
NODEPTR newnode;
printf("Enter value of node(-1 to exit):");
scanf("%d",&n);
if(n!=-1)
{
newnode = create_node(n);
root = insert_node(root,newnode);
}
} while (n!=-1);
printf("\nInorder traversal\n");
in_order(root);
while(1){
NODEPTR search_node,parent;
printf("Enter node to be searched(-1 to stop)");
scanf("%d",&n);
if(n==-1)
break;
search_node = find_node(root,&parent,n);
if(search_node!=NULL){
root = delete_non_recursive(root,search_node,parent);
if(root==NULL)
{
printf("Now tree is empty");
break;
}
else{
printf("now tree is");
in_order(root);printf("\n");
}
}else{
printf("Node not found");
}
}
return 0;
}
Happy binary trees :)
Comments
Post a Comment