Skip to main content

Remove duplicates from linked list

Question:
Write a program to remove all duplicates from a singly linked list.

For example, if the list is
2-->4--->5--->7--->2---->5--->25--->2

after deletion, the output must be something like this
2-->4-->5-->7-->25


An easy solution would be to take one node at a time, compare its value with all the other nodes, and delete if there is a match. But that would be expensive.

A better solution is to sort the list and then compare adjacent values.

Here is how we do it.
  1. Take a sorted list
  2. Compare a node with its previous node.
  3. If they have same value, delete the node
  4. Move to next node
  5. Repeat steps 2 to 4 until end of list
But you should be careful in step 4. Because if you say, node->next, you may use a dangling pointer.

For sorting the list, you can use any algorithm. Insertion sort is easiest for linked lists.

Let us look at the code.


void remove_duplicates(NODEPTR head)
{
    head = sort_list(head);
    NODEPTR temp=head;
    NODEPTR prev_node  = temp;
    temp = temp->next;
    while(temp!=NULL)
    {
        if(temp->n == prev_node->n)
        /* we have duplicate. Delete it*/
        {
             delete_nextnode(prev_node);             
             temp = prev_node->next;
        }else
        {
            prev_node = temp;
            temp = temp->next;
         }
    }
}

We are starting from second node and comparing each node with its previous node. Initial value of prev_node is head and temp is second node. When the values are equal we are calling delete_nextnode() function which will delete the next node of prev_node. Then we move to next node, not using temp = temp->next but using temp = prevnode->next.

If there is no match, we just move to next node.

delete_nextnode() used here is a simple function, which deletes the next node of its parameter. Here is the code for it.


void delete_nextnode(NODEPTR temp)
{
     if(temp->next)
     {
        NODEPTR d1 = temp->next;
        temp->next = temp->next->next;
 free(d1);
     }
}

You can download the driver program from here.

Comments

Popular posts from this blog

Delete a node from doubly linked list

Deletion operation in DLL is simpler when compared to SLL. Because we don't have to go in search of previous node of to-be-deleted node.  Here is how you delete a node Link previous node of node of to-be-deleted to next node. Link next node of node of to-be-deleted to previous node. Free the memory of node of to-be-deleted Simple, isn't it. The code can go like this. prevnode = delnode->prev; nextnode = delnode->next; prevnode->next = nextnode; nextnode->prev = prevnode; free(delnode); And that is it. The node delnode is deleted. But we should always consider boundary conditions. What happens if we are trying to delete the first node or last node? If first node is to be deleted, its previous node is NULL. Hence step 3 should not be used.  And also, once head is deleted, nextnode becomes head . Similarly if last node is to be deleted, nextnode is NULL. Hence step 4 is as strict NO NO. And we should set prevnode to tail. After we put these things together, we have...

Binary tree deletion - non-recursive

In the previous post we have seen how to delete a node of a binary search tree using recursion. Today we will see how to delete a node of BST using a non-recursive function. Let us revisit the 3 scenarios here Deleting a node with no children just link the parent to NULL Deleting a node with one child link the parent to  non-null child of node to be deleted Deleting a node with both children select the successor of node to be deleted copy successor's value into this node delete the successor In order to start, we need a function to search for a node in binary search tree. Did you know that searching in  a BST is very fast, and is of the order O(logn). To search Start with root Repeat until value is found or node is NULL If the search value is greater than node branch to right If the search value is lesser than node branch to left.  Here is the function NODEPTR find_node (NODEPTR root,NODEPTR * parent, int delval) { NODEPTR nd = root; NODEPTR pa = root; if (ro...

Function to sort an array using bubble sort

Quick and dirty way of sorting an array is bubble sort. It is very easy to write and follow. But please keep in mind that it is not at all effecient. #include<iostream> using std::cin; using std::cout; void readArray(int arr[],int sz); void printArray(int arr[],int sz); void sortArray(int arr[],int sz); void swap(int &a,int &b); int main() {    int sz;    cout<<"Size of the array=";    cin>>sz;    int arr[sz];    readArray(arr,sz);     sortArray(arr,sz);   cout<<"Sorted array is ";   printArray(arr,sz); } void readArray(int arr[],int sz) {  for(int i=0;i<sz;i++)    {       cout<<"arr["<<i<<"]=";       cin>>arr[i];   } } void printArray(int arr[],int sz) {  for(int i=0;i<sz;i++)    {       cout<<"arr["<<i<<"]=";    ...