Skip to main content

Merge sort a linked list

Sorting a linked list is much more complex than sorting an array. Because you need to be wary of links at each step and update them.

The most convenient ways of sorting a linked list is insertion sort, where in you remove one node at a time from list and insert them to the sorted list in correct position.

But merge sorting a linked list uses another approach. It splits the list into two halves, sorts them recursively and then merges them maintaining ascending order of key values.

So the three basic parts of this approach are
  1. Splitting the list into two halves of equal length
  2. Sorting these halves
  3. Merging the halves
Step 2 is in fact not needed if the list has only one node. One node is sorted. Hence the merge sort algorithm is

  1. If the list has more than one node
  2. Splitting the list into two halves of equal length
  3. Sorting these halves recursively using steps 2 to 4
  4. Merging the halves 

 Split the list into halves

We have seen in this post how to find the mid point of a linked list. Let us use this approach.

We need to use two pointers say slow and fast. Slow moves one node at a time. And fast moves two nodes at a time. When fast has reached end of the list, slow has reached mid point. 

And also we should detach first half of the list from second half.

NODEPTR split_list(NODEPTR head)
{
    NODEPTR slow,fast;
    slow =head; 
    fast = head;
    if(head==NULL || head->next==NULL)     
       return head; /* if only one node is present, return*/
    NODEPTR temp;
    while(fast!=NULL)         
    {       
        fast = fast->next;        
        if(fast!=NULL){
           temp = slow;
           fast = fast->next;
           slow = slow->next;
        }           
     }     
     temp->next  = NULL;/*detach first half of list from second half*/
     return slow; /*this is the head of second half of list*/
}

 Merge sorted sublists

To merge the two sublists which are already sorted we need to compare nodes from two lists, insert the smaller one into the merged list and move to next node in that list. This process has to be repeated until all nodes of both lists are merged. If the two sublists are of unequal length then one list will have nodes remaining, which should be added to merged list

NODEPTR merge_sorted_lists(NODEPTR head1,NODEPTR head2)
{
 NODEPTR newlist = NULL;
 while(head1!=NULL && head2!=NULL )
 {
    if(head1->val <head2->val)
  {
  NODEPTR temp = head1;
  head1 = head1->next; 
  temp->next = NULL;
  newlist = append_node(newlist,temp);
  }
    else
  {
  NODEPTR temp = head2;
  head2 = head2->next; 
  temp->next = NULL;
  newlist = append_node(newlist,temp);
  }
 }
 while(head1!=NULL)
 {
  NODEPTR temp = head1;
  head1 = head1->next; 
  temp->next = NULL;
  newlist = append_node(newlist,temp);
  }
 while(head2!=NULL)
 {
  NODEPTR temp = head2;
  head2 = head2->next; 
  temp->next = NULL;
  newlist = append_node(newlist,temp);
 }
 return newlist;  
}  
 

Merge sort the list

 Let us use these two functions in the algorithm given earlier to merge sort the list.

NODEPTR merge_sort(NODEPTR head)
{
     if(head==NULL || head->next==NULL)
       return head; /* list has one node or is empty*/
     NODEPTR mid = split_list(head);
     head = merge_sort(head);/* sort first sublist*/
     mid = merge_sort(mid);/* sort second sublist*/
     head = merge_sorted_lists(head,mid);/* merge these*/
     return head;
}

You can download the entire program from here 

Comments

Popular posts from this blog

Delete a node from doubly linked list

Deletion operation in DLL is simpler when compared to SLL. Because we don't have to go in search of previous node of to-be-deleted node.  Here is how you delete a node Link previous node of node of to-be-deleted to next node. Link next node of node of to-be-deleted to previous node. Free the memory of node of to-be-deleted Simple, isn't it. The code can go like this. prevnode = delnode->prev; nextnode = delnode->next; prevnode->next = nextnode; nextnode->prev = prevnode; free(delnode); And that is it. The node delnode is deleted. But we should always consider boundary conditions. What happens if we are trying to delete the first node or last node? If first node is to be deleted, its previous node is NULL. Hence step 3 should not be used.  And also, once head is deleted, nextnode becomes head . Similarly if last node is to be deleted, nextnode is NULL. Hence step 4 is as strict NO NO. And we should set prevnode to tail. After we put these things together, we have...

Function to sort an array using bubble sort

Quick and dirty way of sorting an array is bubble sort. It is very easy to write and follow. But please keep in mind that it is not at all effecient. #include<iostream> using std::cin; using std::cout; void readArray(int arr[],int sz); void printArray(int arr[],int sz); void sortArray(int arr[],int sz); void swap(int &a,int &b); int main() {    int sz;    cout<<"Size of the array=";    cin>>sz;    int arr[sz];    readArray(arr,sz);     sortArray(arr,sz);   cout<<"Sorted array is ";   printArray(arr,sz); } void readArray(int arr[],int sz) {  for(int i=0;i<sz;i++)    {       cout<<"arr["<<i<<"]=";       cin>>arr[i];   } } void printArray(int arr[],int sz) {  for(int i=0;i<sz;i++)    {       cout<<"arr["<<i<<"]=";    ...

Merge two binary search trees

How do you merge two binary search trees? I googled about the solutions. Most solutions told me to convert both trees into linked lists. Merge the lists. Then create a tree from the elements of the list. But why lists? Why can't we store the elements in an array? Because if the data of the tree is larger - not just integer keys, array manipulation becomes difficult. But again, we need not convert both the trees into lists. We can convert one tree into list - a doubly linked list. Then insert the elements of this list into the other tree. I tried this approach. To convert a tree into a sorted doubly linked list Create a doubly linked list. Let the prev and next links of nodes in this list be called left and right respectively. This way we can directly use the binary tree nodes in the list. Use a static variable previousnode  call the function recursively for left child of current node. link current node to the previousnode set next pointer of previousnode to curre...