Skip to main content

Towers of Hanoi

Towers of Hanoi is a popular mathematical puzzle invented in 1883 by French mathematician Eduoardo Lucas. It is also a popular example in coding world because it is a typical example where a recursive solution is much easier than iterative solution.

In the puzzle, there are 3 rods and n discs of different sizes. The puzzle starts with the disks in a neat stack in ascending order of size on one rod, the smallest at the top, thus making a conical shape.

Gif file from wikipedia
Aim of the game is to transfer these  n discs to the 3rd rod, using 2nd rod as temporary location, but keeping in mind that
  • only one disc can be moved at a time.
  • a larger disc can not be placed above a smaller disc.

How do we solve this puzzle?

If some how we move n-1 discs to 2nd rod in correct order, we only have largest disc in 1st rod. And it can be moved to 3rd rod.

So now we need to find a method of moving n-1 discs from 1st rod to 2nd rod in correct order. Again we can use 3rd rod for intermediate storage. Why don't we move n-2 rods from 1st to 3rd rod and then we only have to move n-1th disc from 1st to 2nd rod.

So this is recursion. And we can write our algorithm as
  • recursively move n-1 discs from source rod to extra rod
  • move nth disc from source rod to target rod
  • recursively move n-1 discs from extra rod to target rod
And here is C code for the function.

void move_discs(int numdisks,char from,char to, char middle)
{
if(numdisks>0){
move_discs(numdisks-1,from,middle,to);
printf("Move disk %d from rod %c to rod %c\n",numdisks,from,to);
move_discs(numdisks-1,middle,to,from);
}
}

move_discs is called recursively for n-1 discs for moving from from rod to middle rod. And then nth rod is moved - which is represented by printf function.

next move_discs is called recursively for n-1 discs for moving from middle rod to to rod.

The base case is when n is 0, where recursion is not called.


For 3 discs, the output appears like this

aa@dell:~/dsPrograms$ ./a.out
Enter the number of discs3
Move disk 1 from rod A to rod C
Move disk 2 from rod A to rod B
Move disk 1 from rod C to rod B
Move disk 3 from rod A to rod C
Move disk 1 from rod B to rod A
Move disk 2 from rod B to rod C
Move disk 1 from rod A to rod C

And here we have driver program.


#include<stdio.h>
void move_discs(int numdisks,char from,char to, char middle)
{
if(numdisks>0){
move_discs(numdisks-1,from,middle,to);
printf("Move disk %d from rod %c to rod %c\n",numdisks,from,to);
move_discs(numdisks-1,middle,to,from);
}
}
int main()
{
int n;
printf("Enter the number of discs");
scanf("%d",&n);
move_discs(n,'A','C','B');
return 0;
}


Comments

Popular posts from this blog

Josephus problem

Question: Write a function to delete every k th node from circular linked list until only one node is left. This has a story associated with it. Flavius Josephus was Jewish Historian from 1st century. He and 40 other soldiers were trapped in a cave by Romans. They decided to kill themselves rather than surrendering to Romans. Their method was like this. All the soldiers will stand in a circle and every k th soldier will be shot dead. Josephus said to have calculated the starting point so that he would remain alive. So we have similar problem at hand. We delete every kth node in a circular list. Eventually only one node will be left. e.g. Let us say this is our list And we are deleting every third node.  We will delete 30. Then we delete 60. Next we delete 10. Next it will be 50. Next to be deleted is 20. Next 80. This continues. Implementation   We can count k-1 nodes and delete next node. This can be repeated in  a loop. What must be the termina...

Lowest common ancestor of binary search tree

Question : Write a function to print the lowest common ancestor of two nodes in a binary search tree.  Lowest common ancestor of two nodes x and y in a binary tree is the lowest node that has both x and y as descendants. Here lowest common ancestor of 1 and 7 is 3. LCA of 13 and 7 is root - 8. And LCA of 6 and 7 is 6 itself. The program to find gets complicated for an ordinary binary tree. But for a binary search tree, it is quite simple. As we see from the diagram above, the paths to 1 and 4 are common till the node 3. And at 3 they branch in different directions. So 3 is our LCA. That is lowest common ancestor is the node where the paths to x and y from root deviate. As long as they branch in same direction, we continue to traverse. When they branch in different directions, that is the lowest common ancestor. So let us write a simple algorithm, set temp=root if temp->val >x and temp->val>y temp = temp->left else if temp->val<x and ...

In order traversal of nodes in the range x to y

Question : Write a function for in-order traversal of nodes in the range x to y from a binary search tree. This is quite a simple function. As a first solution we can just traverse our binary search tree in inorder and display only the nodes which are in the range x to y. But if the current node has a value less than x, do we have to traverse its left subtree? No. Because all the nodes in left subtree will be smaller than x. Similarly if the current node has a key value more than y, we need not visit its right subtree. Now we are ready to write our algorithm.     if nd is NOT NULL  if nd->val >=x then visit all the nodes of left subtree of nd recursively display nd->val if nd->val <y then visit all the nodes of right subtree of nd recursively  That's all. We have our function ready. void in_order_middle (NODEPTR nd, int x, int y) { if (nd) { if (nd -> val >= x) in_order_middle(nd...