Skip to main content

Balanced brackets

Have you observed something? When ever you are writing code using any IDE, if you write mismatched brackets, immediately an error is shown by IDE.

So how does IDE  know if an expression is having balanced brackets? For that, the expression must have equal number of opening and closing brackets of matching types and also they must be in correct order.

Let us look at some examples

(a+b)*c+d*{e+(f*g)}   - balanced

(p+q*[r+u)] - unbalanced

(p+q+r+s)) - unbalanced

(m+n*[p+q]+{g+h}) - balanced


So we do we write a program to check if an expression is having balanced brackets? We do need to make use of stack to store the brackets.

The algorithm is as follows
  1. Scan a character - ch from the expression
  2. If the character is opening bracket, push it to stack
  3. If the character is closing bracket
    1. pop a character from stack
    2. If popped opening bracket and ch are not of same type ( ( and ) or [ and ] ) stop the function and return false
  4. Repeat steps 2 and 3 till all characters are scanned.
  5. Once the loop is completed, if the stack is empty return true else return false
Once we have this algorithm, code will be quite simple.

int is_opening_bracket(char ch)
{
switch(ch)
{
case '(':
case '[':
case '{':

return 1;
default : return 0;
}
}

int is_closing_bracket(char ch)
{
switch(ch)
{
case ')':
case ']':
case '}':

return 1;
default : return 0;
}
}

int is_matching_bracket(struct node **top,char ch)
{
char ch2 = pop(top);
if(ch2!=ERRORCHAR)
{
switch(ch)
{
case ')': if(ch2!='(') return 0;
break;
case ']': if(ch2!='[') return 0;
break;
case '}': if(ch2!='{') return 0;
break;

return 1;
default : return 0;
}
}else
return 0;
}
int is_balanced(char *expression)
{
char ch;

struct node *top = NULL;
while(ch =*expression++)
{
if(is_opening_bracket(ch))
{
top = push(ch,top);
}
else if(is_closing_bracket(ch))
{
if(!is_matching_bracket(&top,ch))
{
return 0;
}
}
}
return is_empty(top);
}


I have used 3 helper function to find out if the character is opening bracket, is a closing bracket and if the character matches with the bracket popped from stack. The stack in this case a character stack.

And here you have the driver program with stack implemented using linked list.


#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#define ERRORCHAR 65
struct node
{
char ch;
struct node *next;
};
struct node *createnode(char ch)
{
struct node *newnode = (struct node*) malloc(sizeof(struct node));
newnode->ch = ch;
newnode->next = NULL;
}

int is_empty(struct node *top)
{
return top==NULL;
}
struct node * push(char ch,struct node *top)
{
struct node *newnode = createnode(ch);
newnode->next = top;
top = newnode;
return top;
}

char pop(struct node ** top)
{
char ch;
if(*top==NULL)
return ERRORCHAR;
struct node * temp = *top;
*top =(*top)->next;
ch = temp->ch;

free(temp);
return ch;
}

int main()
{
char expression[50];
double ans;
printf("Enter an expression :");
scanf("%s",expression);
if(is_balanced(expression))
{
printf("The expression has balanced brackets");
}
else
{
printf("The expression has unbalanced brackets");
}
return 0;
}


Comments

  1. Amazing! Its actually awesome article, I have got much clear idea concerning
    from this article.

    ReplyDelete

Post a Comment

Popular posts from this blog

Linked list in C++

A linked list is a versatile data structure. In this structure, values are linked to one another with the help of addresses. I have written in an earlier post about how to create a linked list in C.  C++ has a library - standard template library which has list, stack, queue etc. data structures. But if you were to implement these data structures yourself in C++, how will you implement? If you just use new, delete, cout and cin, and then claim it is your c++ program, you are not conforming to OOPS concept. Remember you have to "keep it together". Keep all the functions and variables together - in a class. You have to have class called linked list in which there are methods - append, delete, display, insert, find, find_last. And there will also be a data - head. Defining node We need a structure for all these nodes. A struct can be used for this purpose, just like C. struct node { int val; struct node * next; }; Next we need to define our class. W

Swap nodes of a linked list

Qn: Write a function to swap the adjacent nodes of a singly linked list.i.e. If the list has nodes as 1,2,3,4,5,6,7,8, after swapping, the list should be 2,1,4,3,6,5,8,7 Image from: https://tekmarathon.com Though the question looks simple enough, it is tricky because you don't just swap the pointers. You need to take care of links as well. So let us try to understand how to go about it. Take two adjacent nodes p1 and p2 Let prevnode be previous node of p1 Now link prevnode to p2 Link p2 to p1 Link p1 to next node of p2 So the code will be prevnode -> next = p2; p1 -> next = p2 -> next; p2 -> next = p1; But what about the start node or head? head node does not have previous node If we swap head with second node, modified head should be sent back to caller  To take care of swapping first and second nodes, we can write p1 = head; p2 = head -> next; p1 -> next = p2 -> next; p2 -> next = p1; head = p2;  Now we are read

Binary tree deletion - non-recursive

In the previous post we have seen how to delete a node of a binary search tree using recursion. Today we will see how to delete a node of BST using a non-recursive function. Let us revisit the 3 scenarios here Deleting a node with no children just link the parent to NULL Deleting a node with one child link the parent to  non-null child of node to be deleted Deleting a node with both children select the successor of node to be deleted copy successor's value into this node delete the successor In order to start, we need a function to search for a node in binary search tree. Did you know that searching in  a BST is very fast, and is of the order O(logn). To search Start with root Repeat until value is found or node is NULL If the search value is greater than node branch to right If the search value is lesser than node branch to left.  Here is the function NODEPTR find_node (NODEPTR root,NODEPTR * parent, int delval) { NODEPTR nd = root; NODEPTR pa = root; if (root -> v