Skip to main content

Reverse a singly linked list

One of the commonly used interview question is - how do you reverse a linked list?

If you talk about a recursive function to print the list in reverse order, you are so wrong. The question is to reverse the nodes of list. Not print the nodes in reverse order.

So how do you go about reversing the nodes.

You need to take each node and link it to previous node. But a singly linked list does not have previous pointer.

So if n1 is current node, n2 = n1->next, you should set

    n2->next = NULL

But doing this would cut off the list at n2.

So the solution is recursion. That is to reverse n nodes  n1,n2,n3... of a list,
  • reverse the sub list from n2,n3,n4....
  • link n2->next to n1
  • set n1->next to NULL
The last step is necessary because, once we reverse the list, first node must become last node and should be pointing to NULL.

But now the difficulty is regarding the head? Where is head and how do we set it?

Once we reach end of list  viz n1->next ==NULL, this node must become new head of the list. We have to store it in a static variable, in order not to change it. 
  1. set current node =n1
  2. if lastnode set head =n1
  3. set node2 = nextnode
  4. recursively reverse list from node2 to end of list
  5. set node2->next = l1
  6. set l1->next = NULL
And here is reverse function


NODEPTR reverse_list(NODEPTR l1)
{
static NODEPTR head;
if(l1->next==NULL)
{
head = l1;
return l1;
}
else
{
NODEPTR node2 = l1->next;
reverse_list(node2);
node2->next = l1;
l1->next = NULL;
return head;
}
}

And this is the complete program.


#include<stdio.h>  
#include<stdlib.h>
struct node
{
int n;
struct node *next;
};
typedef struct node * NODEPTR;

NODEPTR create_node(int value)
{
NODEPTR temp = (NODEPTR) malloc(sizeof(struct node));
temp->next = NULL;
temp->n = value;
return temp;
}

NODEPTR append_node(NODEPTR head, NODEPTR newnode)
{
NODEPTR temp = head;
if(temp==NULL)
return newnode;
while(temp->next !=NULL)
temp = temp->next;
temp->next = newnode;
return head;
}

void display_nodes(NODEPTR head)
{
NODEPTR temp = head;//redundant
while (temp!= NULL)
{
printf("%d====>",temp->n);
temp = temp->next;
}
printf("\n");
}

NODEPTR reverse_list(NODEPTR l1)
{
static NODEPTR head;
if(l1->next==NULL)
{
head = l1;
return l1;
}
else
{
NODEPTR node2 = l1->next;
reverse_list(node2);
node2->next = l1;
l1->next = NULL;
return head;
}
}

NODEPTR delete_node(NODEPTR head, NODEPTR dnode)
{
NODEPTR temp = head;
NODEPTR prev = NULL;
if(dnode==head)
{
head = head->next;
}
while (temp !=NULL && temp!=dnode)
{
prev = temp;
temp = temp->next;
}

if(prev!=NULL)
{
prev->next = temp->next;
}

free(dnode);
return head;
}

int main()
{
NODEPTR head;
NODEPTR newnode,dnode;
int numnodes,i;
//initialize head
head = NULL;
printf("Number of nodes = ");
scanf("%d",&numnodes);

for(i = 0;i<numnodes;i++)
{
int value;
NODEPTR newnode;
printf("node value=");
scanf("%d",&value);
newnode = create_node(value);
head = append_node(head,newnode);
}
printf("The linked list now is ");
display_nodes(head);
head = reverse_list(head);
printf("Now the list is ");
display_nodes(head);
}

You can download the program from here.

Comments

Popular posts from this blog

Linked list in C++

A linked list is a versatile data structure. In this structure, values are linked to one another with the help of addresses. I have written in an earlier post about how to create a linked list in C.  C++ has a library - standard template library which has list, stack, queue etc. data structures. But if you were to implement these data structures yourself in C++, how will you implement? If you just use new, delete, cout and cin, and then claim it is your c++ program, you are not conforming to OOPS concept. Remember you have to "keep it together". Keep all the functions and variables together - in a class. You have to have class called linked list in which there are methods - append, delete, display, insert, find, find_last. And there will also be a data - head. Defining node We need a structure for all these nodes. A struct can be used for this purpose, just like C. struct node { int val; struct node * next; }; Next we need to define our class. W

Swap nodes of a linked list

Qn: Write a function to swap the adjacent nodes of a singly linked list.i.e. If the list has nodes as 1,2,3,4,5,6,7,8, after swapping, the list should be 2,1,4,3,6,5,8,7 Image from: https://tekmarathon.com Though the question looks simple enough, it is tricky because you don't just swap the pointers. You need to take care of links as well. So let us try to understand how to go about it. Take two adjacent nodes p1 and p2 Let prevnode be previous node of p1 Now link prevnode to p2 Link p2 to p1 Link p1 to next node of p2 So the code will be prevnode -> next = p2; p1 -> next = p2 -> next; p2 -> next = p1; But what about the start node or head? head node does not have previous node If we swap head with second node, modified head should be sent back to caller  To take care of swapping first and second nodes, we can write p1 = head; p2 = head -> next; p1 -> next = p2 -> next; p2 -> next = p1; head = p2;  Now we are read

Binary tree deletion - non-recursive

In the previous post we have seen how to delete a node of a binary search tree using recursion. Today we will see how to delete a node of BST using a non-recursive function. Let us revisit the 3 scenarios here Deleting a node with no children just link the parent to NULL Deleting a node with one child link the parent to  non-null child of node to be deleted Deleting a node with both children select the successor of node to be deleted copy successor's value into this node delete the successor In order to start, we need a function to search for a node in binary search tree. Did you know that searching in  a BST is very fast, and is of the order O(logn). To search Start with root Repeat until value is found or node is NULL If the search value is greater than node branch to right If the search value is lesser than node branch to left.  Here is the function NODEPTR find_node (NODEPTR root,NODEPTR * parent, int delval) { NODEPTR nd = root; NODEPTR pa = root; if (root -> v