Skip to main content

Insert a node at begining of linked list

Some how students find linked list very confusing.

It is not.

Let us say you have many nodes in the linked list. And each of this node is dynamically allocated. And hence you can not access them easily. So what is done is each node is connected to previous node with the help of a pointer.

Any node will always have a pointer which has address of next node.

And thus, if you just have address of first node, you can visit second, then third, then fourth and every node of list. 

How do we add new nodes to the list? We can add them at the end. Appending a node to the end of a list is quite simple. Just go till last node, set the pointer of the last node to address of newly created node. That's all.

But what if you want to add a node as the first node? When this newly added node is made is  first node, first node should become second and so on.  But how do you modify first node pointer or head?

Since a function modifying head pointer gets only a copy of head, even if it     changes head, head is not changed in main(). So in order to achieve correct result, the function should return pointer for new value of head.

Let us call the function as modify_first.

The function needs head of course and also the new node which should become the new head.

The function should make the head node as second node of course.

Now after the operation, the HEAD variable which holds address 4000 (which is address of first node) must contain 5200 which is address of newnode.

But what happens to the node with address 4000? We do not want to lose this and hence the list. So we should store this address in the next pointer of newnode.

Hence our code must be some thing like

newnode ->next = head;
head = newnode;

But how do we make changes to head in the calling function ? By returning head.


NODEPTR insert_begining(NODEPTR head, NODEPTR newnode)
{
newnode->next = head;
head = newnode;//this and next line can also be written as return newnode
return head;
}

And do not forget to assign the return value of this function to head. So the function should be called in main as

head = insert_begining(head,newnode);


Let us combine this with our previous program from creating linked list

Here is the complete program.

 #include <stdio.h>  
struct node
{
int data;
struct node *next;
};
typedef struct node * NODEPTR;
NODEPTR create_node(int val)
{
NODEPTR newnode;
newnode= (NODEPTR) malloc(sizeof(struct node));
if (newnode==NULL)
{
printf("Memory allocation failure..");
return NULL;
}
newnode->data = val;
newnode->next = NULL;
return newnode;
}
NODEPTR append_node(NODEPTR head,int val)
{
NODEPTR newnode,lastnode ;
newnode = create_node(val);
if(newnode==NULL)
return head;
/*if the list is empty , assign newnode to head*/
if(head ==NULL)
{
head = newnode;
return head;
}
/*find the last node in the linked list */
for(lastnode = head; lastnode->next!=NULL;lastnode = lastnode->next)
;/*do not forget this semicolon*/
/*link the new node to lastnode - the last node*/
lastnode->next = newnode;
return head;
}
void print_list(NODEPTR head)
{
NODEPTR temp = head;
while(temp!=NULL)
{
printf("%d---->",temp->data);
temp = temp ->next;
}
}
NODEPTR insert_begining(NODEPTR head, NODEPTR newnode)
{
newnode->next = head;
head = newnode;//this and next line can also be written as return newnode
return head;
}
int main()
{
NODEPTR head = NULL,temp;
int i;
for(i = 0;i<10;i++)
{
int n;
printf("Enter a number :");
scanf("%d",&n);
head = append_node(head,n);
}
printf("The list is :");
print_list(head);
printf("Enter the node to add at the begining");
scanf("%d",&i);
temp = create_node(i);
head = insert_begining(head,temp);
print_list(head);
return 0;
}

Comments

Popular posts from this blog

Linked list in C++

A linked list is a versatile data structure. In this structure, values are linked to one another with the help of addresses. I have written in an earlier post about how to create a linked list in C.  C++ has a library - standard template library which has list, stack, queue etc. data structures. But if you were to implement these data structures yourself in C++, how will you implement? If you just use new, delete, cout and cin, and then claim it is your c++ program, you are not conforming to OOPS concept. Remember you have to "keep it together". Keep all the functions and variables together - in a class. You have to have class called linked list in which there are methods - append, delete, display, insert, find, find_last. And there will also be a data - head. Defining node We need a structure for all these nodes. A struct can be used for this purpose, just like C. struct node { int val; struct node * next; }; Next we need to define our class. W

Swap nodes of a linked list

Qn: Write a function to swap the adjacent nodes of a singly linked list.i.e. If the list has nodes as 1,2,3,4,5,6,7,8, after swapping, the list should be 2,1,4,3,6,5,8,7 Image from: https://tekmarathon.com Though the question looks simple enough, it is tricky because you don't just swap the pointers. You need to take care of links as well. So let us try to understand how to go about it. Take two adjacent nodes p1 and p2 Let prevnode be previous node of p1 Now link prevnode to p2 Link p2 to p1 Link p1 to next node of p2 So the code will be prevnode -> next = p2; p1 -> next = p2 -> next; p2 -> next = p1; But what about the start node or head? head node does not have previous node If we swap head with second node, modified head should be sent back to caller  To take care of swapping first and second nodes, we can write p1 = head; p2 = head -> next; p1 -> next = p2 -> next; p2 -> next = p1; head = p2;  Now we are read

Binary tree deletion - non-recursive

In the previous post we have seen how to delete a node of a binary search tree using recursion. Today we will see how to delete a node of BST using a non-recursive function. Let us revisit the 3 scenarios here Deleting a node with no children just link the parent to NULL Deleting a node with one child link the parent to  non-null child of node to be deleted Deleting a node with both children select the successor of node to be deleted copy successor's value into this node delete the successor In order to start, we need a function to search for a node in binary search tree. Did you know that searching in  a BST is very fast, and is of the order O(logn). To search Start with root Repeat until value is found or node is NULL If the search value is greater than node branch to right If the search value is lesser than node branch to left.  Here is the function NODEPTR find_node (NODEPTR root,NODEPTR * parent, int delval) { NODEPTR nd = root; NODEPTR pa = root; if (root -> v