Skip to main content

Sorting a linked list

How do we sort a linked list? Try this method - this is simple insertion sort method. Easily implementable in LL.

1) Create a new list called sorted list

2) Take one node from list, delete it. And add it to the sorted list

3) Take the next node - nodenew, traverse through sorted list till you find a node with key value greater than nodenew, and insert the nodenew before this node. Of course you have to delete nodenew from original list.

4) Continue this process until the original list is empty.

The complexity - O(n2)

 struct node
{
  int n;
   struct node *next;
};
typedef struct node *NODEPTR: 
NODEPTR sortList(NODEPTR head)  
{
NODEPTR newList = NULL;
while(head!=NULL)
{
NODEPTR temp = head;
head = head->next;
temp->next = NULL;
newList = insertSorted(newList,temp);
}
printList(newList);
return newList;
}
NODEPTR insertSorted(NODEPTR head,NODEPTR newnode)
{
NODEPTR temp, prevNode=head;
if(head==NULL)
return newnode;
temp = head;
while(temp!=NULL && temp->n <newnode->n)
{
prevNode = temp;
temp = temp->next;
}
if(temp==head){
newnode->next = head;
head = newnode;
}else{
prevNode->next = newnode;
newnode->next = temp;
}
return head;
}


sortList function removes head - first node, of original list and inserts into the new list and continues till original list is empty.

insertSorted function keeps traversing the list until it finds  a node whose value is greater than node to be inserted. It keeps saving previous node. Once the greater value node - temp,   is found, newnode is inserted between previous node and temp.

Two special cases to be considered are
  1. When the list is empty. The function adds newnode as head
  2. When the newnode has a value less than head node. Then function adds the node before head and makes newnode as head node. 

Comments

Popular posts from this blog

Delete a node from doubly linked list

Deletion operation in DLL is simpler when compared to SLL. Because we don't have to go in search of previous node of to-be-deleted node.  Here is how you delete a node Link previous node of node of to-be-deleted to next node. Link next node of node of to-be-deleted to previous node. Free the memory of node of to-be-deleted Simple, isn't it. The code can go like this. prevnode = delnode->prev; nextnode = delnode->next; prevnode->next = nextnode; nextnode->prev = prevnode; free(delnode); And that is it. The node delnode is deleted. But we should always consider boundary conditions. What happens if we are trying to delete the first node or last node? If first node is to be deleted, its previous node is NULL. Hence step 3 should not be used.  And also, once head is deleted, nextnode becomes head . Similarly if last node is to be deleted, nextnode is NULL. Hence step 4 is as strict NO NO. And we should set prevnode to tail. After we put these things together, we have...

Function to sort an array using bubble sort

Quick and dirty way of sorting an array is bubble sort. It is very easy to write and follow. But please keep in mind that it is not at all effecient. #include<iostream> using std::cin; using std::cout; void readArray(int arr[],int sz); void printArray(int arr[],int sz); void sortArray(int arr[],int sz); void swap(int &a,int &b); int main() {    int sz;    cout<<"Size of the array=";    cin>>sz;    int arr[sz];    readArray(arr,sz);     sortArray(arr,sz);   cout<<"Sorted array is ";   printArray(arr,sz); } void readArray(int arr[],int sz) {  for(int i=0;i<sz;i++)    {       cout<<"arr["<<i<<"]=";       cin>>arr[i];   } } void printArray(int arr[],int sz) {  for(int i=0;i<sz;i++)    {       cout<<"arr["<<i<<"]=";    ...

Merge two binary search trees

How do you merge two binary search trees? I googled about the solutions. Most solutions told me to convert both trees into linked lists. Merge the lists. Then create a tree from the elements of the list. But why lists? Why can't we store the elements in an array? Because if the data of the tree is larger - not just integer keys, array manipulation becomes difficult. But again, we need not convert both the trees into lists. We can convert one tree into list - a doubly linked list. Then insert the elements of this list into the other tree. I tried this approach. To convert a tree into a sorted doubly linked list Create a doubly linked list. Let the prev and next links of nodes in this list be called left and right respectively. This way we can directly use the binary tree nodes in the list. Use a static variable previousnode  call the function recursively for left child of current node. link current node to the previousnode set next pointer of previousnode to curre...