Skip to main content

Search for a node in Linked List

Normally searching can be done using linear search or binary search. But in a linked list, jumping to an intermediate node is not possible. Hence searching should be done sequentially.

Let us assume we have a linked list of names.

struct node
{
char name[30];
struct node * next_ptr;
};
typedef struct node * NODEPTR;


In fact it would be better optimized, if we use a dynamic memory for name. For sake of simplicity, let us leave that. Now we have a node pointer called head, which points to the head of the list. And we also have a string search_string. We need to write a function to search this string, and return the pointer to node containing this string. If search string is not found, we must return NULL.

NODEPTR head;
-----
-----
NODEPTR search(NODEPTR head, char *str)
{
NODEPTR temp;
for(temp=head;temp!=NULL;temp = temp->next_ptr)
{
if(strcmp(temp->name,str)==0)
return temp;
}
return NULL;
}
We start from first node and compare each node till we find the node containing str. But we should not forget to check for end of list, indicated by NULL.

One step where we may go wrong is comparing temp->name with str instead of using strcmp. If we compare them, then the pointers of these two strings are compared, which will never be equal.

Two more ways of optimization are

  1. Not using temp at all. Instead head itself can be used for list traversal. We need not worry that list would get corrupted. It won't as head is a call by value parameter. 
  2. In for condition adding the clause temp->NULL && strcmp(temp->name,str). If strcmp returns 0, condition is false and loop will terminate. But in this case, the body of for loop will be just a semicolon (;). And return statement will be return temp. If we have reached end of list, then temp will be NULL, so we return NULL. 
You can download the complete program from here

Comments

Popular posts from this blog

Linked list in C++

A linked list is a versatile data structure. In this structure, values are linked to one another with the help of addresses. I have written in an earlier post about how to create a linked list in C.  C++ has a library - standard template library which has list, stack, queue etc. data structures. But if you were to implement these data structures yourself in C++, how will you implement? If you just use new, delete, cout and cin, and then claim it is your c++ program, you are not conforming to OOPS concept. Remember you have to "keep it together". Keep all the functions and variables together - in a class. You have to have class called linked list in which there are methods - append, delete, display, insert, find, find_last. And there will also be a data - head. Defining node We need a structure for all these nodes. A struct can be used for this purpose, just like C. struct node { int val; struct node * next; }; Next we need to define our class. W

Swap nodes of a linked list

Qn: Write a function to swap the adjacent nodes of a singly linked list.i.e. If the list has nodes as 1,2,3,4,5,6,7,8, after swapping, the list should be 2,1,4,3,6,5,8,7 Image from: https://tekmarathon.com Though the question looks simple enough, it is tricky because you don't just swap the pointers. You need to take care of links as well. So let us try to understand how to go about it. Take two adjacent nodes p1 and p2 Let prevnode be previous node of p1 Now link prevnode to p2 Link p2 to p1 Link p1 to next node of p2 So the code will be prevnode -> next = p2; p1 -> next = p2 -> next; p2 -> next = p1; But what about the start node or head? head node does not have previous node If we swap head with second node, modified head should be sent back to caller  To take care of swapping first and second nodes, we can write p1 = head; p2 = head -> next; p1 -> next = p2 -> next; p2 -> next = p1; head = p2;  Now we are read

Binary tree deletion - non-recursive

In the previous post we have seen how to delete a node of a binary search tree using recursion. Today we will see how to delete a node of BST using a non-recursive function. Let us revisit the 3 scenarios here Deleting a node with no children just link the parent to NULL Deleting a node with one child link the parent to  non-null child of node to be deleted Deleting a node with both children select the successor of node to be deleted copy successor's value into this node delete the successor In order to start, we need a function to search for a node in binary search tree. Did you know that searching in  a BST is very fast, and is of the order O(logn). To search Start with root Repeat until value is found or node is NULL If the search value is greater than node branch to right If the search value is lesser than node branch to left.  Here is the function NODEPTR find_node (NODEPTR root,NODEPTR * parent, int delval) { NODEPTR nd = root; NODEPTR pa = root; if (root -> v